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1 Introduction

In various combinatorial structures sums of roots rise up. Especially those of a constant norm.
Therefore, there is always a present need to offer some nice characterization of such sums. One
good example where such sums occur is in difference set theory. More about difference sets can
be found in [1, 2, 3]. Various methods used in difference set theory, as well in estimating values
of sums of roots are presented in [4, 5, 6]. Applications of difference sets on coding theory can
be found in [7, 8]. Further algebraic approach has been initialized mainly in [9, 10].

Using really simple algebraic argument we find out more about the nature of zero-sums of
roots of unity. To be more precise we have following:

Theorem 1. Let ε = e
2πi

2k , k ≥ 1 and suppose that εα1 + εα2 + · · ·+ εαl = 0. Then l is even and
there is a partition of the set {α1, α2, . . . , αl} in 2-element subsets {αi, αj} such that

εαi + εαj = 0.

Proof: Let f(x) = xα1 + xα2 + · · · + xαl and let ε be a root of unity of order 2k. Then g(x) =
x2

k−1
+1 is the minimal polynomial for the algebraic number ε. We have assumed that ε is a root

of f(x), therefore g(x) divides f(x). Thus f(x) = g(x)h(x) for some h(x) ∈ Z[x], thus we have
proved our assertion. �
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2 Main result

It is known that for vectors a1, a2, . . . , am in Cn following holds |
m∑
i=1

ai| =
m∑
i=1

|ai| if and only if

ai’s are collinear. Otherwise, |
m∑
i=1

ai| ≤
m∑
i=1

|ai|. Now, we are presenting our main result.

Lemma 1. Let η be a root of unity of order 2n, where n ≥ 1. If ηx1 , ηx2 , ηx3 , ηx4 are mutually
different, then |ηx1 + ηx2 + ηx3 + ηx4| 6= 2.

Proof: Let us assume that claim in not true. Hence, suppose that there are four mutually different
roots ηx1 , ηx2 , ηx3 , ηx4 such that

|ηx1 + ηx2 + ηx3 + ηx4| = 2. (1)

Let us show that we may assume ηxi + ηxj 6= 0. If there are two roots which are additive
inverses, then for two roots which remained we would have |ηxk + ηxs| = 2. Then we get |ηxk +
ηxs| = |ηxk | + |ηxs|. Then it is straightforward that ηxk , ηxs should be linearly dependent, hence
ηxk = ηxs which is a contradiction.

We may write |ηx1 + ηx2 + ηx3 + ηx4| = |1 + ηx1−x4 + ηx2−x4 + ηx3−x4|. Without losing
generality we introduce notation: xi ↔ xi − x4 for i = 1, 2, 3. This gives us a motivation to
reformulate original problem (1) in a way that we have a premise:

|1 + ηx1 + ηx2 + ηx3| = 2, (2)

where ηxi 6= 1 are mutually different. Hence

3∑
i=1

(ηxi + η−xi) +
3∑

1≤i<j≤3

(ηxi−xj + ηxj−xi) = 0. (3)

Let us introduce: P =
3∑
i=1

(ηxi + η−xi), T =
3∑

1≤i<j≤3

(ηxi−xj + ηxj−xi). Hence (3) becomes

P + T = 0. For the sake of simplicity we will write

i↔ j if ηxi + ηxj = 0,

i↔ js if ηxi + ηxj−xs = 0,

−i↔ j if η−xi + ηxj = 0.

There are some simple properties which hold for introduced notation:

1. i↔ j ⇔ −i↔ −j,

2. i↔ jk ⇔ −i↔ kj,

3. ij ↔ ks⇔ ji↔ sk,

4. ij ↔ is⇔ j ↔ s.
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Proof of rule 1: If i ↔ j, then ηxi + ηxj = 0, thus ηxi = −ηxj . After taking the inverse we
get η−xi = −η−xj , so η−xi + η−xj = 0, so −i↔ −j. Similarly other implication goes.

Proof of rule 2: If i↔ jk, then ηxi + ηxj−xk = 0. After inverting η−xi + ηxk−xj = 0.

Proof of rule 3: Statement ij ↔ ks means ηxi−xj + ηxk−xs = 0. After taking the inverse we
get ηxj−xi + ηxs−xk = 0. Therefore ji↔ sk. Another implication goes similarly.

Proof of rule 4: If ij ↔ is then ηxi−xj + ηxi−xs = 0. If we divide previous equation by ηxi

we get η−xj + η−xs = 0, thus ηxj + ηxs = 0. So, indeed j ↔ s.

Let us introduce more notation. If ηx + ηy = 0, then ηx−y = −1 = η2
n−1
. Hence x ≡

y + 2n−1 (mod 2n). This can be represented as equation in Z2n in a way x = y + δ, (δ = 2n−1).

Notice that δ + δ = 2δ = 2n = 0. Furthermore, if x = y + δ, then x+ δ = y + δ + δ = y.

Now, we need to list some rules and properties which will be used in process of classification
of all possible abbreviations in P + T = 0.

Claim 1: Powers in (2) satisfy 2xi 6= 0.
If 2xi = 0, then η2xi = 1. Thus 1 + ηxi = 0 or −1 + ηxi = 0. Contradiction.
Claim 2: Equations i↔ −i, ij ↔ ji can’t hold at the same time.
Assume the opposite. First equation would give us xi = −xi + δ, while using the second one

we would get xi − xj = xj − xi + δ. Therefore 2xi = δ and 2xi = 2xj + δ. But, then 2xj = 0,

which is not possible due to previous claim.
Claim 3: Equality i↔ ik is not possible.
Again, we are using the same approach. Let us assume that the opposite is true. Then, we

would have ηxi + ηxi−xk = 0. Thus 1 + ηxk = 0, which is obvious contradiction.
Claim 4: Equalities ij ↔ ji, ik ↔ ki are not fulfilled at the same time.
We are assuming that the opposite is true. Then we would have xi − xj = xj − xi + δ and

xi − xk = xk − xi + δ. Therefore, 2xi = 2xj + δ, and 2xi = 2xk + δ, so 2xj = 2xk. Reached
conclusion leads us to ηxj + ηxk = 0 or ηxj = ηxk . In both cases we have a contradiction.

Claim 5: Equalities i↔ ji, k ↔ jk are not true at the same time.
Assume the opposite. Then xi = xj − xi + δ and xk = xj − xk + δ. Therefore 2xi =

xj + δ, 2xk = xj + δ. Now we have 2xi = 2xk, for which has been already proved that it is a
contradiction.

Claim 6: Equalities i↔ ji, k ↔ ik, j ↔ kj are not true at the same time.
On the contrary, we would have xi = xj − xi + δ, xk = xi − xk + δ and xj = xk − xj + δ.

Therefore 2xi = xj + δ, 2xk = xi + δ and 2xj = xk + δ. From the second equation we get
4xk = 2xi + 2δ = 2xi = xj + δ. Thus, 8xk = 2xj = xk + δ, so 7xk = δ. This gives us that
η7xk = −1. We get that order of ηxk divides 7. Thus, we have a contradiction.

Claim 7: Equalities k ↔ ji, j ↔ ik can not be fulfilled at the same time.
If opposite, we would have xk = xj − xi + δ, xj = xi − xk + δ. After summing, we get

2xk = 0, and that contradicts Claim 1.
Claim 8: Following equations can not occur at the same time: i↔ −i, jk ↔ kj, k ↔ ij.

On the contrary, we would have 2xi = δ, xj − xk = xk − xj + δ, xk = xi − xj + δ.

From second equation we would have 2xj = 2xk + δ, while using the third one we get
2xk = 2xi − 2xj. Therefore 2xj = 2xi − 2xj + δ. If we use 2xi = δ we get 4xj = 0. Then
2xj = 0 or 2xj = δ. If 2xj = 0, then ηxj = 1, so ηxj = 1 or ηxj = −1. In the first case we
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have a contradiction, since we would have two equal roots. While, in the second case we also
have a contradiction, since we would get two roots which can be canceled. If 2xj = δ, then from
2xk = 2xi − 2xj and 2xj = δ we get 2xk = 0. This conclusion leads to a contradiction in similar
way.

Claim 9: Statements i↔ −i, jk ↔ kj, k ↔ ji can not be true at the same time.
Proof is similar to a proof of Claim 8.
Claim 10: Statements i↔ −i, k ↔ ji, j ↔ ki can not be true at the same time.
Suppose that claim is not true. Then 2xi = δ, xk = xj − xi + δ, xj = xk − xi + δ. Summing

last two equations we get 2xi = 0, which is a contradiction.
Now we have to determine possibilities of pairwise abbreviation in (3). Our analysis depend

on number of pairs which can be canceled within P .
Case 1: Three pairs are canceled within P . Then P = 0, thus T = 0. Let us analyze which six

terms in P could be abbreviated (in pairs). Let us assume that in P we have 1 ↔ −1 i 2 ↔ −2,
then also 3 ↔ −3. Therefore 2x1 = 2x2 = 2x3 = δ, which leads us to a conclusion that at least
two roots ηxi are equal. Contradiction.

If 1↔ −2, 2↔ −3, 3↔ −1, then ηx1 = ηx3 , and again we get a contradiction.
Notice that premise i↔ −j, j ↔ −k, for mutually different i, j, k immediately leads us to a

contradiction with assumption that all roots are mutually different.
If 1 ↔ −1, then the only option is that 2 ↔ −3 and 3 ↔ −2. From T = 0 we get that

possibilities for canceling are: 12 ↔ 21 and 13 ↔ 31, 23 ↔ 32. By Claim 2 (or similarly by
Claim 4) that can not happen.

Second possibility would be 12 ↔ 31, 23 ↔ 32. Then, we would have 2x1 = δ, x2 +

x3 = δ, x1 − x2 = x3 − x1 + δ, x2 − x3 = x3 − x2 + δ. Using last two equalities we get
2x1+2x2 = 3x3+x2. On the other hand, the first one gives x2+δ = 3x3. Using second equation
we have δ + x2 + x3 = 4x3. Then 4x3 = 0. Therefore, 2x3 = δ. But, we have already seen that
this leads us to a contradiction.

Case 2: Two pairs in P are abbreviated.
Without losing generality we may assume that 1 ↔ −2. Hence 2 ↔ −1. By Claim 3,

possibilities for abbreviations of x3 are: 3↔ 12, 3↔ 13, 3↔ 23.

Let 3↔ 12. If 23↔ 32, then 13↔ 31. By Claim 4 we have a contradiction. Also, we need to
cover the cases 23↔ 31 and 32↔ 13. Then x3 = x1−x2+δ, x1+x2 = δ, x2−x3 = x3−x1+δ,
therefore 2x3 = 0, but by Claim 1, again, we have a contradiction.

Let 3↔ 13. If we assume that 23↔ 32 and 12↔ 21, then by Claim 4 we are done. It remains
to check the case 23↔ 12 and 32↔ 21. Then x2−x3 = x1−x2+δ, x1+x2 = δ, x3 = x1−x3+δ.
From first and second equality we get x3 = 3x2. Using the third one, we have 6x2 = x1 + δ, then
7x2 = 0. This is contradiction since the order of η is of power 2. Possibility 3 ↔ 23 is the same
as previous one (just replace 1 by 2).

Therefore, all options which arise from assumption that there are two pairs which can be
abbreviated in P lead us to a contradiction.

Case 3: Only one pair abbreviates in P , while other two are abbreviating with some terms
in T.
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Without loosing generality we may assume that 1 ↔ −1. If, for example 1 ↔ 2, then −1 ↔
−2. So, we have more then one pair which abbreviates within P . The same happens if we assume
1↔ 3 or 1↔ −2 or 1↔ −3.

Hence, ηx2 is canceled by some term from T. The same holds also for ηx3 . Thus, we have
following options for canceling ηx2: 2↔ 12, 2↔ 13, 2↔ 31, 2↔ 32.

If 2↔ 12, then 3↔ 13 or 3↔ 23. Firs possibility is eliminated by Claim 8, while the second
one is also eliminated by Claim 2.

If 2↔ 13, then 3↔ 12 or 3↔ 21. In both cases it contradicts to Claim 8. It remains to check
3↔ 23. But this can be resolved by applying Claim 2.

If 2 ↔ 31, then we have one of the following: 3 ↔ 12, 3 ↔ 21, 3 ↔ 23. First possibility is
eliminated by Claim 9, and also the second one by Claim 2.

If 2 ↔ 32, then we have to cover the cases: 3 ↔ 12, 3 ↔ 21, 3 ↔ 13. Using Claims 2 and
9 we get a contradiction. Hereby all options are now covered, and each one of those leads to a
contradiction.

Case 4: Now, let us assume that there are no pairs in P which can be abbreviated. In that
case, each term in P would be canceled by some from T.

First possibility is that we have maximum number of ’neighbors’ meaning 1 ↔ 21, 2 ↔
32, 3 ↔ 13. Claim 6 shows that assumed is not possible. Notice that case 1 ↔ 21, 2 ↔ 12

immediately gives a contradiction, otherwise we would have x1 = x2−x1+δ and x2 = x1−x2+δ.
After simplifying, 2x1 = x2+δ.Hence, x2 = 2x1+δ.After we apply this one can get 2(2x1+δ) =
x1 + δ. So, 3x1 = δ. Therefore we would get conclusion that ηx1 is of order 2. Contradiction.

Now, we will investigate case when we have two neighbors meaning i ↔ ki, j ↔ ij ili i ↔
ki, j ↔ kj. First case leads as to k ↔ jk, but then we get the case with the maximum number
of neighbors, while for the second option it can be shown, using Claim 5, that also leads us to a
contradiction.

Finally, it remains to observe the last case, when we have just one neighbor. Assume that
i ↔ ji, j ↔ ki or i ↔ ji, j ↔ ik. But, both options links to a previous case (because of
necessary condition k ↔ jk). By this, we are done with covering all possible options for pairwise
abbreviations in Case 4. Since each one of those possibilities gives a contradiction, proof has been
done. �
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