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1 Introduction

In various combinatorial structures sums of roots rise up. Especially those of a constant norm.
Therefore, there is always a present need to offer some nice characterization of such sums. One
good example where such sums occur is in difference set theory. More about difference sets can
be found in [1, 2, 3]. Various methods used in difference set theory, as well in estimating values
of sums of roots are presented in [4, 5, 6]. Applications of difference sets on coding theory can
be found in [7, 8]. Further algebraic approach has been initialized mainly in [9, 10].

Using really simple algebraic argument we find out more about the nature of zero-sums of
roots of unity. To be more precise we have following:

27
Theorem 1. Let ¢ = e2*, k > 1 and suppose that €' + €*?> 4 - - - + & = 0. Then [ is even and
there is a partition of the set {a1, g, . . ., oy} in 2-element subsets {«;, o} such that

gt g% = (.

Proof: Let f(z) = 2 + 2°2 + --- + 2° and let ¢ be a root of unity of order 2¢. Then g(z) =
22" + 1 is the minimal polynomial for the algebraic number €. We have assumed that ¢ is a root
of f(x), therefore g(x) divides f(x). Thus f(x) = g(x)h(z) for some h(z) € Z[x|, thus we have

proved our assertion. O
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2 Main result

m

It is known that for vectors a, as, . . . , a,, in C" following holds | Z a;| = Z |a;| if and only if

i=1 =1

m m
a;’s are collinear. Otherwise, | E a;| < E |a;|. Now, we are presenting our main result.
=1 i=1

Lemma 1. Let 1) be a root of unity of order 2", where n. > 1. If n°', 2, % n/** are mutually
different, then "' + 12 + 1 + 1| # 2.

Proof: Let us assume that claim in not true. Hence, suppose that there are four mutually different
roots n*t, n*2, n*3 n* such that

"™t 4+ 0" 40"+ ™| = 2. (1)

Let us show that we may assume 7" 4+ n* # (. If there are two roots which are additive

inverses, then for two roots which remained we would have |p™* + n*s| = 2. Then we get |n** +

n| = || + |
n** = 1" which is a contradiction.

We may write | 4+ n®2 4+ n* + ™| = |1 4 p™1 7% + p¥2~% 4 p*3~74| Without losing
generality we introduce notation: z; <> x; — x4 for ¢ = 1,2,3. This gives us a motivation to

. Then it is straightforward that n**, n*s should be linearly dependent, hence

reformulate original problem (1) in a way that we have a premise:
[1+70" + 0" 4+ 0" =2, )

where 7™ # 1 are mutually different. Hence

3 3
Do) Y (T ) =0 3)
i=1 1<i<y<3
3 3
Let us introduce: P = Z(n“ +n"), T = Z (n*™* 4+ n™~%"). Hence (3) becomes
i=1 1<i<j<3

P + T = 0. For the sake of simplicity we will write
i g if n" 40" =0,

i< js if p"4+ntT =0,

—i> g if 7% 4+n% =0.
There are some simple properties which hold for introduced notation:
l.ij& -1+ —7,
2.1 jk & —i <k,
3. 1] <> ks < ji <> sk,
4. 1] <> is & J <> s.
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Proof of rule 1: If i <+ j, then n* + n* = 0, thus ™ = —n". After taking the inverse we
getn % = —n"% son " 4+ 1% =0,s0 —i <> —j. Similarly other implication goes.

Proof of rule 2: If i <+ jk, then ™ + n™~"k = (. After inverting =" + n**~% = (.

Proof of rule 3: Statement 7j <> ks means 7™~ % + n" % = (). After taking the inverse we
get n®i~% 4 "~ = (). Therefore ji <+ sk. Another implication goes similarly.

Proof of rule 4: 1f 15 <+ is then n*~% + n* % = (. If we divide previous equation by 1"
we get =% 4+ n~% = 0, thus n*7 + n* = 0. So, indeed j <> s.

Let us introduce more notation. If n” + n¥ = 0, then n ¥ = —1 = 12" '. Hence z =
y + 27! (mod 2"). This can be represented as equation in Zy» ina way z = y + 6, (6 = 2"71).
Notice that ) + § = 20 = 2" = 0. Furthermore, if t =y + d,thenz +d =y + 0+ 6 = v.

Now, we need to list some rules and properties which will be used in process of classification
of all possible abbreviations in P + 7" = 0.

Claim 1: Powers in (2) satisfy 2z; # 0.

If 2z; = 0, then *** = 1. Thus 1 + 7% = 0 or —1 + 7% = 0. Contradiction.

Claim 2: Equations ¢ <+ —1, 7j <> ji can’t hold at the same time.

Assume the opposite. First equation would give us x; = —x; + J, while using the second one
we would get x; — x; = x; — x; + 0. Therefore 2x; = 0 and 2z; = 2z; + 4. But, then 2z; = 0,
which is not possible due to previous claim.

Claim 3: Equality ¢ <> ik is not possible.

Again, we are using the same approach. Let us assume that the opposite is true. Then, we
would have n** + n*~ = (. Thus 1 + n** = 0, which is obvious contradiction.

Claim 4: Equalities 15 <+ ji, ik <> ki are not fulfilled at the same time.

We are assuming that the opposite is true. Then we would have z; — z; = x; — x; + ¢ and
x; — x = x — ; + 0. Therefore, 2z, = 2z; + 0, and 2x; = 2z, + I, so 2x; = 2x;,. Reached
conclusion leads us to ™/ + n* = 0 or n*7 = n*. In both cases we have a contradiction.

Claim 5: Equalities ¢ <+ ji, k <> jk are not true at the same time.

Assume the opposite. Then x; = x; — x; + 0 and 2, = z; — 3, + 0. Therefore 2z, =
xj + 9, 2z, = x; + 0. Now we have 2z; = 2z, for which has been already proved that it is a
contradiction.

Claim 6: Equalities © <+ ji, k <> ik, j <> kj are not true at the same time.

On the contrary, we would have x; = x; — x; + 0, 2, = x; — 2 + 0 and z; = x3, — x; + 0.
Therefore 22; = x; + 6, 2z, = x; + 0 and 22; = x;, + 6. From the second equation we get
dxy = 2x; + 20 = 2z, = x; + 0. Thus, 8z, = 2z; = x + 9, so Tz, = J. This gives us that
n™k = —1. We get that order of n** divides 7. Thus, we have a contradiction.

Claim 7: Equalities k <> ji, j <> tk can not be fulfilled at the same time.

If opposite, we would have z;, = z; — x; + 0, x; = z; — x, + J. After summing, we get
2x;. = 0, and that contradicts Claim 1.

Claim 8: Following equations can not occur at the same time: i <+ —1, jk <> kj, k <> 1J.

On the contrary, we would have 2x; =0, x; — o, =, — x; + 0, x, = x; — x; + 0.

From second equation we would have 2z; = 2x; + 0, while using the third one we get
2z, = 2x; — 2x;. Therefore 2x; = 2x; — 2x; + 0. If we use 2z, = § we get 4z; = 0. Then
20 = 0or2z; = 0. If 2z; = 0, then " = 1, s0on®™ = 1 orn® = —1. In the first case we
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have a contradiction, since we would have two equal roots. While, in the second case we also
have a contradiction, since we would get two roots which can be canceled. If 22; = ¢, then from
2z, = 2x; — 2x; and 2x; = 0 we get 2x;, = 0. This conclusion leads to a contradiction in similar
way.

Claim 9: Statements ¢ <> —t, jk <> kj, k <> ji can not be true at the same time.

Proof is similar to a proof of Claim 8.

Claim 10: Statements ¢ <> —i, k <> j7, J <> kt can not be true at the same time.

Suppose that claim is not true. Then 2z; = 0, x, = x; — x; + 0, x; = T — x; + 0. Summing
last two equations we get 2z; = 0, which is a contradiction.

Now we have to determine possibilities of pairwise abbreviation in (3). Our analysis depend
on number of pairs which can be canceled within P.

Case 1: Three pairs are canceled within P. Then P = 0, thus 7' = 0. Let us analyze which six
terms in P could be abbreviated (in pairs). Let us assume that in P we have 1 <+ —11 2 <> —2,
then also 3 <+ —3. Therefore 221, = 2x5, = 2x3 = 9, which leads us to a conclusion that at least
two roots 1" are equal. Contradiction.

Ifl+ -2 24 -3, 3 —1, then n™ = n*3, and again we get a contradiction.

Notice that premise ¢ <> —j, 7 <> —k, for mutually different 7, j, k¥ immediately leads us to a
contradiction with assumption that all roots are mutually different.

If 1 <+ —1, then the only option is that 2 <+ —3 and 3 <> —2. From 7" = 0 we get that
possibilities for canceling are: 12 <+ 21 and 13 < 31, 23 <> 32. By Claim 2 (or similarly by
Claim 4) that can not happen.

Second possibility would be 12 < 31, 23 < 32. Then, we would have 2z; = 9§, x +
x3 =0, x1 — Ty = T3 —x1 + 0, xo — T3 = T3 — T2 + 0. Using last two equalities we get
2x1 4 2x9 = 3x3+ 2. On the other hand, the first one gives x5 +J = 3x3. Using second equation
we have 0 + x5 + 23 = 4x3. Then 4x3 = 0. Therefore, 2x3 = J. But, we have already seen that
this leads us to a contradiction.

Case 2: Two pairs in P are abbreviated.

Without losing generality we may assume that 1 <> —2. Hence 2 <+ —1. By Claim 3,
possibilities for abbreviations of x3 are: 3 <> 12, 3 <+ 13, 3 <> 23.

Let 3 <» 12. If 23 <+ 32, then 13 <> 31. By Claim 4 we have a contradiction. Also, we need to
cover the cases 23 «+» 31 and 32 <> 13. Then x3 = x1 —x9+9, x1+x9 = 0, T9—1x3 = r3— 1140,
therefore 2x3 = 0, but by Claim 1, again, we have a contradiction.

Let 3 <+ 13. If we assume that 23 <+ 32 and 12 <> 21, then by Claim 4 we are done. It remains
to check the case 23 <> 12 and 32 <+ 21. Then xo—2x3 = £1—x9+9, T1+T9 = 0, 3 = T1—T3+0.
From first and second equality we get x3 = 3z5. Using the third one, we have 6x5 = x; + 9, then
Txo = 0. This is contradiction since the order of 7 is of power 2. Possibility 3 <> 23 is the same
as previous one (just replace 1 by 2).

Therefore, all options which arise from assumption that there are two pairs which can be
abbreviated in P lead us to a contradiction.

Case 3: Only one pair abbreviates in P, while other two are abbreviating with some terms
inT.
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Without loosing generality we may assume that 1 <+ —1. If, for example 1 <+ 2, then —1 «>
—2. So, we have more then one pair which abbreviates within P. The same happens if we assume
l<3orl« —2orl < —3.

Hence, 1™ is canceled by some term from 7. The same holds also for 3. Thus, we have
following options for canceling n*2: 2 <+ 12,2 < 13,2 < 31,2 <> 32.

If 2 <+ 12, then 3 <> 13 or 3 <+ 23. Firs possibility is eliminated by Claim 8, while the second
one is also eliminated by Claim 2.

If 2 <> 13, then 3 <> 12 or 3 ++ 21. In both cases it contradicts to Claim 8. It remains to check
3 <> 23. But this can be resolved by applying Claim 2.

If 2 <+ 31, then we have one of the following: 3 <+ 12,3 <+ 21,3 < 23. First possibility is
eliminated by Claim 9, and also the second one by Claim 2.

If 2 «+ 32, then we have to cover the cases: 3 <> 12,3 <> 21,3 <> 13. Using Claims 2 and
9 we get a contradiction. Hereby all options are now covered, and each one of those leads to a
contradiction.

Case 4: Now, let us assume that there are no pairs in P which can be abbreviated. In that
case, each term in P would be canceled by some from 7.

First possibility is that we have maximum number of ’neighbors’ meaning 1 < 21, 2
32, 3 <> 13. Claim 6 shows that assumed is not possible. Notice that case 1 <> 21,2 <> 12
immediately gives a contradiction, otherwise we would have x1 = xo—x1+4d and 25 = 11 —x5+9.
After simplifying, 221 = x5+0. Hence, xo = 2x1+6. After we apply this one can get 2(2x1+6) =
x1 + 0. So, 3x1 = 6. Therefore we would get conclusion that ! is of order 2. Contradiction.

Now, we will investigate case when we have two neighbors meaning ¢ <+ ki, j <> 17 ili ¢ <>
ki, j <> kj. First case leads as to k& <> jk, but then we get the case with the maximum number
of neighbors, while for the second option it can be shown, using Claim 5, that also leads us to a
contradiction.

Finally, it remains to observe the last case, when we have just one neighbor. Assume that
1 4> ji, j <> kiori <> ji,j <> k. But, both options links to a previous case (because of
necessary condition k <+ jk). By this, we are done with covering all possible options for pairwise
abbreviations in Case 4. Since each one of those possibilities gives a contradiction, proof has been
done. U
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