Notes on Number Theory and Discrete Mathematics ISSN 1310-5132 Vol. 20, 2014, No. 5, 11-13

A note on certain inequalities for bivariate means

József Sándor

Department of Mathematics, Babeş-Bolyai University Str. Kogalniceanu nr. 1, 400084 Cluj-Napoca, Romania e-mail: jjsandor@hotmail.com

Abstract: We obtain simple proofs of certain results from paper [1].

Keywords: Means and their inequalities. **AMS Classification:** 26D15, 26D99.

1 Introduction

Let a,b be two distinct positive numbers. The power mean of order k of a and b is defined by $A_k = A_k(a,b) = \left(\frac{a^k + b^k}{2}\right)^{1/k}, \ k \neq 0 \text{ and } A_0 = \lim_{k \to 0} A_k = \sqrt{ab} = G(a,b).$ Let $A_1 = A$ denote

also the classical arithmetic mean of a and b, and $He = He(a,b) = \frac{2A+G}{3} = \frac{a+b+\sqrt{ab}}{3}$ the so-called Heronian mean.

In the recent paper [1] the following results have been proved:

$$A_k(a,b) > a^{1-k}I(a^k, b^k) \text{ for } 0 < k \le 1; b > a$$
 (1)

$$A_k(a,b) < I(a,b) \text{ for } 0 < k \le \frac{1}{2};$$
 (2)

$$He(a^k, b^k) < A_{\beta}(a^k, b^k) < \frac{3}{2^{1/\beta}} He(a^k, b^k) \text{ for } k > 0, \ \beta \ge \frac{2}{3}$$
 (3)

and

$$A_k < S < 2^{1/k} \cdot A_k \text{ for } 1 \le k \le 2.$$
 (4)

In the proofs of (1)–(4) the differential calculus has been used. Our aim will be to show that, relations (1)–(4) are easy consequences of some known results.

2 Main results

Lemma 2.1. The function $f_1(k) = \left(\frac{a^k + b^k}{2}\right)^{1/k} = A_k(a,b)$ is a strictly increasing function of k; while $f_2(k) = (a^k + b^k)^{1/k}$ is a strictly decreasing function of k. Here k runs through the set of real numbers.

Proof. Through these results are essentially known in the mathematical folklore, we shall give here a proof.

Simple computations yield:

$$k^{2} \frac{f_{1}'(k)}{f_{1}(k)} = \frac{x \ln x + y \ln y}{x + y} - \ln \left(\frac{x + y}{2}\right),\tag{5}$$

and

$$k^{2} \frac{f_{2}'(k)}{f_{2}(k)} = \frac{x \ln x + y \ln y}{x + y} - \ln(x + y), \tag{6}$$

where $x=a^k>0, \ y=b^k>0$. Since the function $f(x)=x\ln x$ is strictly convex (indeed: $f''(x)=\frac{1}{x}>0$) by $f\left(\frac{x+y}{2}\right)<\frac{f(x)+f(y)}{2}$, relation (5) implies $f_1'(k)>0$. Since the function $t\to \ln t$ is strictly increasing, one has $\ln x<\ln(x+y)$ and $\ln y<\ln(x+y)$; so $x\ln x+y\ln y<(x+y)\ln(x+y)$, so relation (6) implies that $f_2'(t)>0$. These prove the stated monotonicity properties.

Proof of (1.1) By the known inequality I < A we have $I(a^k, b^k) < A(a^k, b^k) = \frac{a^k + b^k}{2}$. Now $\frac{a^k + b^k}{2} \le a^{k-1} \left(\frac{a^k + b^k}{2}\right)^{1/k}$ is equivalent with (for 1 - k > 0) $\left(\frac{a^k + b^k}{2}\right)^{1/k} > a$ or $a^k + b^k > 2a^k$, which is true by b > a. For k = 1 the inequality becomes I < A.

Proof of (1.2) Since A_k is strictly increasing, one has

$$A_k \le A_{1/2} = \left(\frac{\sqrt{a} + \sqrt{b}}{2}\right)^2 = \frac{A + G}{2} < I,$$

by a known result (see [3]) of the author:

$$I > \frac{2A+G}{3} > \frac{A+G}{2}.\tag{7}$$

Proof of (1.3) By the inequality $He < A_{2/3}$ (see [2]) one has

$$He(a^k, b^k) < A_{2/3}(a^k, b^k) \le A_{\beta}(a^k, b^k),$$

by the first part of Lemma 2.1.

Now.

$$2^{1/\beta}A_{\beta}(a^k, b^k) \le 2^{3/2}(a^k, b^k)$$

by the second part of Lemma 2.1, and

$$A_{2/3}(a^k, b^k) < \frac{3}{2\sqrt{2}} He(a^k, b^k),$$

$$A_{2/3} < \frac{3}{2\sqrt{2}}He.$$
 (8)

Since $2^{3/2} = 2\sqrt{2}$, inequality (3) follows.

Proof of (1.4) In [2] it was proved that

$$A_2 < S < \sqrt{2}A_2. \tag{9}$$

Now, by Lemma 2.1 one has, as $k \le 2$ that $A_k \le A_2 < S$ and $\sqrt{2}A_2 \le 2^{1/k}A_k$. Thus, by (9), relation (4) follows. We note that condition $1 \le k$ is not necessary.

References

- [1] Du, H., Some inequalities for bivariate means, *Commun. Korean Math. Soc.*, Vol. 24, 2009, No. 4, 553–559.
- [2] Neuman, E., J. Sándor, Comparison inequalities for certain bivariate means, *Appl. Anal. Discrete Math.*, Vol. 3, 2009, No. 1, 46–51.
- [3] Sándor, J., A note on some inequalities for means, *Arch. Math. (Basel)*, Vol. 56, 1991, 471–473.