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Abstract: Let G(V, E) be a graph. A vertex v ∈ V(G) is said to be a self vertex switching of G, 
if G is isomorphic to Gv, where Gv is the graph obtained from G, by deleting all edges of 
G incident to v and adding edges between v and the vertices which are not adjacent to v in G. In 
this paper, we discuss some applications of self vertex switching and list out all trees and 
unicyclic graphs with unique self vertex switching. We also obtain some more results on self 
vertex switching. 
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1 Introduction 

Throughout this paper, we consider only finite, simple, undirected graphs. For notations and 
terminology, we follow [1]. The eccentricity of a vertex v, e(v), is defined to be the distance of 
a farthest vertex from v. A vertex v is said to be an eccentric vertex of u, if d(u, v) = e(u). 
The diameter, diam(G), of a graph G is the maximum eccentricity and the  radius, r(G), of G is 
the minimum eccentricity in G. A vertex v is said to be a central vertex of G if e(v) = r(G). 
For any vertex v ∈ V(G), the open neighbourhood of v is the set of all vertices adjacent to v. 
That is, N(v) = {u ∈ V(G) / uv ∈ E(G)}. The closed neighbourhood of v is defined by 
N[v] = N(v) ∪ {v}. The set V \ N[v] is denoted by N[v]c and the join of two graphs G1 and G2 is 
denoted by G1 ∨ G2. Let nG denote the disjoint union of n copies of G. 

Normally, while analysing the properties of a graph, the neighbour set of each vertex is 
considered to be a constant set or a set which adds additional elements. That is, a neighbour of 
a vertex remains its neighbour forever. But in real life, this is not proved to be true always. 
Even no relationship in this world proves itself to be eternal now-a-days. So it is no longer of 
greater use to consider the neighbour set of a node in a system to be rigid and constant. What 
happens if a vertex in a graph changes its neighbour often?   

Consider the following real life problems: 
1. There are many official networks in which we can classify the nodes into units as per 

their work nature. The work distribution will not be even among all the units. The 
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efficiency of any unit of heavy duty will be greatly reduced, if it continues to work 
without break. It would not be economically advisable to design a duplicate network 
of the whole system to provide a substitution for this unit during its recharging 
period. Within the same system, it would be better if there is work exchange without 
affecting the overall structure of the network. 

2. In a confidential system of data transaction, the data supplier should not be identified 
easily. For that, he should not be in fixed rigid contact with his primary data 
collectors. But the whole system should not have any change in its outlook to avoid 
any suspicion. Within the same network, it would be better if there is a dynamical 
vertex, switching over of which should not affect the structure of the system. 

3. While dealing with power cut, it would be better if there is a two way process in the 
same unit, which provides extra facilities along with the primary work when there is 
power supply and mere necessary output when there is power cut. But there cannot be 
separate original and duplicate network as it is not economical. A single unit should 
provide a two way process.  

All the above problems can be solved, if we can find a node (vertex) in the network models 
(graphs) which changes its neighbours as required without affecting the structure of the whole 
system. The problem of designing systems with such a node is equivalent to the problem of 
constructing a graph with a self vertex switching, the definition of which is given as follows: 

The switching concept was introduced by Seidel in [5]. For a graph G(V, E) and a subset S 
of V, the switching of G by S is defined as the graph GS(V, E’), which is obtained from G, by 
removing all edges between S and its complement V \ S and adding edges between S and V \ S 
which are not in G. For example, a graph G with S = {v1, v2} and GS are shown in Fig. 1.  
 
 

 
 v1       v1 

 
                           v2                   v2 
                         G           GS 

Figure 1 
 

When S = {v}, the corresponding switching is called vertex switching and it is denoted by 
Gv. In this case, we call the vertex v as a vertex switching. For example, a graph G and a vertex 
switching v of G are shown in Fig. 2. 

 
                         v                                                                  v 
               
          
 
                              G            Gv 

Figure 2 

A subset S of V(G) is said to be a self switching of G if G ≅ GS. The set of all self 
switchings of G with cardinality k is denoted by SSk(G) and the number of self switchings of G 
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with cardinality k is denoted by ssk(G). If k = 1, then the particular self switching is called a self 
vertex switching. A graph G with a self vertex switching v is shown in Fig. 3. 

For further details on self vertex switchings, one can refer [2], [3], [4] and [6]. It has been 
proved in [4] that a graph of order 2n + 1 has at most n + 1 self vertex switchings.  
Characterisation of graphs of order 2n + 1 with n + 1 mutually non-adjacent self vertex 
switchings and that with mutually adjacent self vertex switchings are given in [4].  

 
 
 
                           v                                                           v                                                                          
      
              
                             G             Gv 

Figure 3 
 

In fact, it is proved that Kn,n+1 is the only graph of order 2n + 1 in which there are n + 1 
mutually non adjacent self vertex switchings whereas Kn ∪ Kn+1 is the only graph of order 
2n + 1 in which there are n + 1 mutually adjacent self vertex switchings. Characterisation of a 
cut vertex in a connected graph to be a self vertex switching has been given in [6]. 

The girth of a graph G is defined to be the length of a smallest cycle in G and the 
circumference of G is the length of a longest cycle in G. In a graph G, deleting an edge uv and 
introducing a new vertex w and the new edges uw and vw is called the subdivision of the edge 
uv.  The edge subdivision graph denoted by S1(G) is obtained from the graph G by subdividing 
every edge of G. For example, S1(K1,5) is shown in Fig. 4. 
 

 
  
 
     

 
  

    K1,5        S1(K1,5) 
Figure 4 

       

Let Cr(v) denote the cycle v1v2....vrv1 of order r with a fixed vertex v = v1 and let  
Cr(v)(Pn1, Pn2, …, Pnr) be the graph obtained from Cr(v) by identifying an end vertex of the path 
Pni with the vertex vi. For example, C3(v)(P3, P3, P1) is shown in Fig. 5.     

 

                                                                    (v)v1 

       
                                       

    v3                 v2 

                       C3(v)(P3, P3, P1) 

Figure 5 
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Two vertices u and v in G are said to be interchange similar [3], if there exists an 
automorphism α of G such that α(u) = v and α(v) = u. 

For further investigation, we need the following results. 
 

Theorem A [6]: If v is a self vertex switching of a graph G of order p, then dG(v) = (p – 1)/2. 
 

Theorem B [6]: Let G be a graph in which any two self vertex switchings, if exist, are 
interchange similar. A vertex v in G is a self vertex switching if and only if G – v has an 
automorphism, which maps the elements of N(v) onto N(v)c. 
 

That is, for any graph G with v as a self vertex switching,  〈N(v)〉 ≅ 〈N[v]c〉.  
 

Theorem C [6]: Let G be a connected graph with a cut vertex as a self vertex switching such 
that any two self vertex switchings, if exist, are interchange similar. Then ss1(G) > 1 if and 
only if G ≅ C3(v)(P3, P1, P3). 

 

In this paper, we characterise trees and unicyclic graphs that have a unique self vertex 
switching. We construct graphs having a self vertex switching with given radius or circum-
ference or diameter. Also we prove that any graph G is an induced subgraph of a graph H with 
a self vertex switching {v} such that v is a central vertex of H with eccentricity r(G) + 1. 

2 Main results 

The following theorem characterises all connected graphs of girth greater than four, which 
have a unique self vertex switching. 
 

Theorem 1. A connected graph G with girth at least five has ss1 = 1 if and only if                      
G ≅ S1(K1,n). 
 

Proof: Let v be the self vertex switching of G. Then we have G ≅ Gv and so Gv also has girth 
greater than or equal to five. Now, let V(G) = N(v) ∪ (N(v))c. By Theorem B,  〈N(v)〉 ≅ 〈N[v]c〉.  
But N[v]c must be an independent set in G, otherwise Gv contains a triangle, which is 
impossible. This means that 〈N(v)〉 is a null graph in G. Therefore for any edge xy in G, we 
have x ∈ N(v) and y ∈ N(v)c. Since Gv is connected, no vertex in N(v) is of degree 1. This 
forces that every vertex in N(v) is of degree exactly two, otherwise Gv contains a C4. Similarly 
if a vertex in N[v]c is of degree greater than one, then G contains a C4, which is impossible. 
Thus d(u) = 1, for all u∈ N[v]c. Such a graph G is isomorphic to S1(K1,n).  

The converse is obvious.  
 

Since the girth of any tree is infinite, we can state that 
 

Corollary 1.1. For any tree T, ss1 = 1 if and only if T ≅ S1(K1,n). 
 

For any unicyclic graph G, girth is the length of the unique cycle. And if the girth is greater 
than four and ss1 = 1, then by the above theorem, G ≅ S1(K1,n), which is acyclic. This is a 
contradiction. Hence, we can state that: 
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Corollary 1.2. If a connected unicyclic graph G has ss1= 1, then the unique cycle in G is of 
length 3 or 4.  
 

Let G1(n) denote the graph obtained by identifying the central vertex of  S1(K1,n) with v in 
C3(v)(P4, P2, P1) and G2(n) denote the graph obtained by identifying the central vertex of 
S1(K1,n) and a pendant vertex of K1,3 with v in C4(v). For example, G1(3) and G2(2) are shown 
in Fig. 6. 

 

 
 
  

 v     v 
                          

 
    G1(3)     G2(2) 

Figure 6 
 

Now we give a characterisation for a unicyclic graph with unique self vertex switching. 

Theorem 2. For a connected unicyclic graph G, ss1 = 1 if and only if G ≅ G1(n) or G2(n). 

Proof: Assume that ss1 = 1 and let v be the self vertex switching in G. Then we have G ≅ Gv 
and 〈N(v)〉 ≅ 〈N[v]c〉.  Let C be the unique cycle in G. 
Case (i): 〈N(v)〉 contains an edge uw. 

Then uvwu is a triangle in G. Since G is unicyclic, uw is the unique edge in N(v). Also since 
 〈N(v)〉 ≅ 〈N[v]c〉, there exist two adjacent vertices u1 and w1 in N[v]c. Since G is connected 
and unicyclic, exactly one of these two vertices u1 and w1 is adjacent to a vertex, say x, in 
N(v). By isomorphism, exactly one of the vertices u and w, is adjacent to a vertex, say y, in 
N[v]c. Since G – {u, w, u1, w1, x, y} is a tree with a self vertex switching, by Corollary 1.1,  
〈G – {u, w, u1, w1, x, y}〉 ≅ S1(K1, n). Then it is clear that G is isomorphic to G1(n). 

Case (ii): 〈N(v)〉 contains no edge. 
Then 〈N[v]c〉 is also a null graph. If V(C) is contained in N(v) ∪ N[v]c, then G contains at 
least two cycles containing v, which is a contradiction. 

Therefore, v ∈ V(C). Since N(v) is an independent set and by Corollary 1.2, the cycle is of 
length 4. Hence the cycle contains the vertex v, two neighbours of v and a non-neighbour of v. 
Since a vertex in N[v]c is adjacent to two vertices in N(v), there will be a vertex in N(v), which 
is adjacent to two vertices of N[v]c. The resultant graph is isomorphic to G2(n). 

And the converse is obvious, since v is clearly the self vertex switching in G1(n) or  
G2(n).  

Theorem 3. For any n ≥ 4, there exists a graph with a self vertex switching and circumference 
equal to n. 
Proof: Suppose n is even. Then n = 2m for some positive integer m ≥ 2. In this case, consider 
the cycle C2m = u1 u2 ... u2m. Now construct a graph G2m with V(G2m) = {v} ∪ V(C2m) and 
E(G2m) = E(C2m) ∪ {vu2i | 1 ≤ i ≤ m}. Then clearly circumference of G is 2m. And v is 
obviously the self vertex switching in G2m and hence G2m is the required graph. 
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On the other hand, if n is odd, then n = 2m + 1, m ≥ 2. Now construct a graph G2m+1 with 
V(G2m+1) = {v} ∪ V(C2m) and E(G2m+1) = E(C2m) ∪ {vui  | 1 ≤ i ≤ m}. Clearly the circumference 
of G2m+1 is 2m + 1 and so G is the required graph with a self vertex switching v.  

For example, the graphs G6 and G7 are shown in Fig. 7. Here v is the self vertex switching 
of G6 and v1, v2 are the self vertex switchings of G7. 

 

 
   v2 

                                        v                                                  v1 
 
               
 

                                      G6                                      G7 

Figure 7 
 

Note that for n = 5, 6 and n ≥ 8, the graph Gn constructed above has unique self vertex 
switching whereas the graphs G4 and G7 have two self vertex switchings.  

 
Theorem 4. Every graph is an induced subgraph of a graph H with ss1 = 1 and r(H) = 1. 
 

Proof: Let G be any graph. Consider the graph K2 ∨ 2G. Add a new vertex v and join v with all 
vertices in one copy of G and a vertex of K2. The graph thus formed is the required graph H 
with v as the unique self vertex switching. Since H has a full vertex, r(H) = 1. Note that the 
graph H is nothing but 2(G ∨ K1)∨K1. 

For example, the graph H having G = C4 as an induced subgraph with r(H) = ss1(H) = 1 is 
shown in Fig. 8.  Here v is the unique self vertex switching.   
 

 
 
 
 
                                           
 

          v              
G                                                        

Figure 8   
 

Theorem 5. Any connected graph G is an induced subgraph of a graph H with a self vertex 
switching v such that v is a central vertex of H with eccentricity r(G) + 1. 

Proof: Let G be any connected graph with vertex set V(G) = {u1, u2, …, un}. Let um be 
any central vertex of G and let ur be an eccentric vertex of um. Take four copies G1, G2, G3, G4 
of G with V(G1) = {v1, v2, …, vn}, V(G2) = {w1, w2, …, wn}, V(G3) = {x1, x2, …, xn} and 
V(G4) = {y1, y2, …, yn} such that ui corresponds to the vertices vi, wi, xi, yi in the respective 
copy. Now construct a graph H with V(H) = V(G1) ∪ V(G2) ∪ V(G3) ∪ V(G4) ∪ {v} and 
E(H) = E(G1) ∪ E(G2) ∪ E(G3) ∪ E(G4) ∪  {vvj, vwj  | 1 ≤ j ≤ n, j ≠ m} ∪ {vxm, vym}. 
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Then clearly  〈N(v)〉 ≅ 〈N[v]c〉. Therefore {v} is a self vertex switching of H.   
Also by construction, v is in every path connecting a vertex and its eccentric vertex. 

Therefore, v is a central vertex of H.  All vj and wj (1 ≤ j ≤ n) are at a distance at most 2 from v. 
Let xl  be an eccentric vertex of v. Then d(v, xl) = 1 + d(xm, xl). This distance is maximum when 
xl  = xr  and is equal to r(G).  Therefore r(H) = r(G)+1. 

Hence H is the required graph containing G as an induced sub graph. For example, a graph 
G and the corresponding graph H constructed above are shown in Fig. 9.  

 

 
 
                      
 
 
 

                                                                                    v 
 

                                  G      H 
 

Figure 9 
 
Theorem 6. For any n ≥ 2, there exists a graph G of diameter n with a self vertex switching. 

Proof: For n = 2, 3 or 4, the required graph Gn with diameter n and a self vertex switching v is 
shown in Fig. 10. Therefore, assume that n ≥ 5. Consider the path P2(n−2) = u1 u2 ... u2(n−2). Now 
construct the graph Gn with V(G) = {v} ∪ V(P2(n−2)) and E(Gn) = E(P2(n−2)) ∪ {vui | 1 ≤ i ≤ n − 2}. 
Then clearly diameter of G is n. And v is the only self vertex switching of Gn and hence Gn is 
the required graph.    
 
 

 

           v               v           v 

        G2                   G3       G4 
Figure 10 

 
The graphs G5 and G6 constructed in the above theorem are given in Fig. 11. Here v1 and v2 

are the self vertex switchings of G5 whereas v is the self vertex switching of G6.  
 

            v2 

 
 
                v1                v 

               G5                              G6 
Figure 11 

Note that for n ≥ 6, the graph constructed in the above theorem will have unique self vertex 
switching. 
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