Notes on Number Theory and Discrete Mathematics ISSN 1310–5132 Vol. 20, 2014, No. 4, 47–52

Fibonacci number sums as prime indicators

J. V. Leyendekkers¹ and A. G. Shannon²

¹ Faculty of Science, The University of Sydney NSW 2006, Australia
² Faculty of Engineering & IT, University of Technology Sydney, NSW 2007, Australia
e-mails: tshannon38@gmail.com, Anthony.Shannon@uts.edu.au

Abstract: Sums of the first *p* Fibonacci numbers, S_p , are shown to be related to *K* in $F_p = Kp \pm 1$, which is itself a useful indicator of primality for F_p . Digit sums of *K*, S_p , sums of F_p^2 and Simson's identity were compared. **Keywords:** Fibonacci numbers, Primality, Digit sums.

AMS Classification: 11B39, 11B50.

1 Introduction

The sum of the first n Fibonacci numbers is

$$\sum_{i=1}^{n} F_n = F_{n+2} - 1 \tag{1.1}$$

which, when n = p, becomes

$$S_p = F_{p+2} - 1. (1.2)$$

Following on recent work [3–7], we compare this sum for the primes $3 \le p \le 113$ using the method of digit sums [2, 7]. The digit sum in base *b*, of the digits of the number *n*, is often represented by $s_b(n)$ [1], and satisfies the congruence:

$$n \equiv s_b(n) \pmod{b-1}.$$
(1.3)

When b = 10, this congruence is the basis of high school techniques such as casting out nines and of divisibility tests such as those for 3 and 9.

2 Digit sums of S_p

The sums of Fibonacci numbers and the corresponding digit sums (Tables 1 and 2) show distinctions between primes and composites (Table 2). F_{97} , if a prime, does not conform so that

it was checked with the factor $(k \mid Kp \pm 1)$ technique [3,4,6] which showed that it was indeed a composite, namely

$$F_{97} = 83621143489848422977$$

= 193 × 389 × 1113805073322701

 $193 = 2 \times 97 - 1$

 $389 = 4 \times 97 + 1$.

with

and

However, either F_7 or F_{37} do not conform, both having a digit sum of 6. F_{109} , if conforming, is a composite, and F_{113} is a prime. These results are generally in accord with the *K* results, from [6]

$$F_p = Kp \pm 1 \tag{2.1}$$

The *K* values appear to be more reliable.

р	S_p	Digit sum	Parity	р	S _p		Parity
3	4	4	р	59	2504730781960	7	c
7	33	6	р	61	6557470319841	8	р
11	332	7	р	67	117669030460993	1	c
13	609	6	р	71	806515533049392	9	р
17	4180	4	р	73	2111485077978049	1	р
19	10945	1	с	79	37889062373143905	6	c
23	75024	9	р	83	259695496911122584	7	р
29	1346268	3	р	89	4660046610375530308	4	c
31	3524577	6	с	97	21892295834555169025	1	c
37	63245985	6	с	101	1500520536206896083276	3	р
41	433494436	4	с	103	3928413764606871165729	6	р
43	1134903169	1	р	107	26925748508234281076008	7	c
47	7778742048	9	р	109	70492524767089125814113	6	c
53	139583862444	3	с	113	483162952612010163284884	4	р

Table 1. Digit sums of first p Fibonacci numbers and parity

<i>p</i> *	Primes	Composites
1	3,7,8,9	4,6
3	1,4,6,7,9	3
7	4,6,9	1,6,7
9	3	1,4,6,7

Table 2. Digit sum for first pFibonacci Numbers: $[p^* = right-end-digit]$

<i>p*</i>	F_{p+1}	F_{p-1}
1		\checkmark
3	\checkmark	
7	\checkmark	
9		\checkmark

Table 3. Divisibility of neighbours of F_p by p

3 Relationship of S_p and K in $F_p = K_p \pm 1$

One of the direct neighbours of F_p is divisible by p according to p^* in a neat pattern (Table 3) [3].

1.1 $p^* = 3, 7$

From (1.2) and the Fibonacci recurrence relation

$$S_p + 1 = F_{p+1} + Kp - 1 \tag{3.1}$$

$$F_{p+2} = F_{p+1} + F_p \tag{3.2}$$

so that

$$K = \frac{1}{p} \left(S_p + 2 - F_{p+1} \right).$$
(3.3)

Both (S_p +2) and F_{p+1} are divisible by p; K values (Table 4) from Equation (3.3) agree with those from Equation (2.1).

p	Parity	K	р	Parity	K
3	р	1	53	с	1005967758
7	р	2	67	с	670829406162
13	р	18	73	р	11048157986978
17	р	94	83	р	1195118711985006
23	р	1246	97	с	862073644225241474
37	c	652914	103	р	14568160545698020226
43	р	10081266	107	c	96118885585174929102
47	р	63217342	113	р	16332019981684334481118

Table 4. *K* values from Equation (3.3)

1.2 $p^* = 1, 9$

Since from repeating the Fibonacci recurrence relation

$$F_{p+2} = 2F_p + F_{p-1}$$

= 2(Kp+1) + F_{p-1} (3.4)

and

$$S_{p} = 2(Kp+1) + F_{p-1} - 1$$

= 2Kp + 1 + F_{p-1} (3.5)

then

$$K = \frac{1}{2p} \left(S_p - 1 - F_{p-1} \right). \tag{3.6}$$

As for Section (3.1), K values agree with previous values [6,7]. The sums of digits of K from Tables 4 and 5 show clear distinctions for primes and composites (Table 6).

p	Parity	K	р	Parity	K
11	р	8	61	р	41061160360
19	c	220	71	р	4338894664368
29	р	17732	79	с	183194101578180
31	c	43428	89	с	19999768719154092
41	c	4038540	101	р	5674731128849674100
59	c	16215627560	109	с	494050431343748276624

Table 5. *K* values from Equation (3.6)

<i>p*</i>	Primes	Composites
1	1,2,8,9	3,6
3	1,2,4,6,8,9	3
7	1,2,4	6,8,9
9	2	3,4,5,6

Table 6. Digit sums of K

4 Sums of Fibonacci squares

The digit sums of Fibonacci squares were calculated from

$$F_{p} \times F_{p+1} = \sum_{i=1}^{p} F_{p}^{2}.$$
(4.1)

The digit sums generally show distinctions between primes and composites (Tables 7, 8) but not as reliably as K or S_p . The digit sums are simply obtained from the digit sums of F_p times the digit sums of F_{p+1} .

р	Parity	F_p	F_{p+1}	F_pF_{p+1}	р	Parity	F_p	F_{p+1}	F_pF_{p+1}
3	р	2	3	6	59	c	8	9	9
7	р	4	3	3	61	р	8	8	1
11	р	8	9	9	67	c	5	6	3
13	р	8	8	1	71	р	1	9	9
17	р	4	1	4	73	р	1	1	1
19	c	5	6	3	79	c	4	3	3
23	р	1	9	9	83	р	8	9	9
29	р	5	8	4	89	c	4	1	4
31	c	4	3	3	97	c	1	1	1
37	c	8	8	1	101	р	5	8	4
41	c	4	1	4	103	р	4	5	2
43	р	5	6	3	107	c	8	8	1
47	р	1	9	9	109	с	8	8	1
53	с	5	8	4	113	р	4	1	4

Table 7. Digit sums of Fibonacci squares

<i>p</i> *	Primes	Composites
1	1,4,9	3,4
3	1,2,3,4,6,9	4
7	3,4,9	1,3
9	4	1,3,4,9

Table 8. Digit sums

The digit sums 3 and 4 are clearly indeterminate for this index.

5 Simson's Identity

An approximation to this identity leads to the Golden Ratio [5], namely

$$F_{n+1}F_{n-1} \approx F_n^2$$

whereas the precise form is

$$F_{n+1}F_{n-1} = F_n^2 + (-1)^n$$
(5.1)

and

$$F_{n+2}F_{n-2} = F_n^2 + (-1)^{n-1}$$
(5.2)

and the digit sums of these quantities show that the digit sum of F_p^2 is either 1 or 7. (Compare the perfect numbers which always have a digit sum of 1 [7].) The composite F_p commonly have a digit sum of 7 when $p^* = 1$, 3, or 9, but digit sum of 1 when $p^* = 7$.

р	Parity of F _p	$egin{array}{c} F_{p-1} \mathbf{X} \ F_{p+1} \end{array}$	$egin{array}{c} F_{p-2} \mathbf{X} \ F_{p+2} \end{array}$	F_p^2	р	Parity of F _p	$egin{array}{c} F_{p-1}\mathbf{X} \ F_{p+1} \end{array}$	$egin{array}{c} F_{p-2} \mathbf{X} \ F_{p+2} \end{array}$	F_p^2
11	p	9	2	1	7	p	6	8	7
31	с	6	8	7	17	р	6	8	7
41	c	6	8	7	37	c	9	2	1
61	р	9	2	1	47	р	9	2	1
71	р	9	2	1	67	с	6	8	7
101	р	6	8	7	97	с	9	2	1
13	р	9	2	1	107	c	9	2	1
23	р	9	2	1					
43	р	6	8	7	19	c	6	8	7
53	c	6	8	7	29	р	6	8	7
73	р	9	2	1	59	c	9	2	1
83	р	9	2	1	79	c	6	8	7
103	р	6	8	7	89	c	6	8	7
113	р	6	8	7	109	с	9	2	1

Table 9. Digit sums for F_p^2

6 Concluding comments

While the results are interesting because of the links, other indicators such as K or S_p are more useful for primality tests [6, 7]. Furthermore, digit sums provide patterns for further exploration in both pure [8] and applied mathematics [2] for university student projects at all levels, as do right-end-digits as integers (modulo 10) [9].

References

- [1] Fujiwara, M., Y. Ogawa. *Introduction to Truly Beautiful Mathematics*. Tokyo: Chikuma Shobo, 2005.
- [2] Grabner, P. J., T. Herendi, R. F. Tichy. Fractal Digital Sums and Codes. *Applicable Algebra in Engineering, Communication and Computing*, Vol. 8, 1997, No. 1, 33–39.
- [3] Leyendekkers, J. V., A. G. Shannon. Fibonacci and Lucas Primes. *Notes on Number Theory and Discrete Mathematics*, Vol. 19, 2013, No. 2, 49–59.
- [4] Leyendekkers, J. V., A. G. Shannon. The Pascal-Fibonacci Numbers. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 3, 5–11.
- [5] Leyendekkers, J. V., A. G. Shannon. The Decimal String of the Golden Ratio. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 1, 27–31.
- [6] Leyendekkers, J. V., A. G. Shannon. Fibonacci Primes. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 2, 6–9.
- [7] Leyendekkers, J. V., A. G. Shannon. Fibonacci Numbers with Prime Subscripts: Digital Sums for Primes versus Composites. *Notes on Number Theory and Discrete Mathematics*, Vol. 20, 2014, No. 3, 45–49.
- [8] Shallit, J. O. On Infinite Products Associated with Sums of Digits. *Journal of Number Theory*. Vol. 21, 1985, No. 2, 128–134.
- [9] Watkins, J. J. *Number Theory: A Historical Approach*. Princeton and Oxford: Princeton University Press, 2014, 271–272.