Fibonacci number sums as prime indicators

J. V. Leyendekkers ${ }^{1}$ and A. G. Shannon ${ }^{2}$
${ }^{1}$ Faculty of Science, The University of Sydney NSW 2006, Australia
${ }^{2}$ Faculty of Engineering \& IT, University of Technology
Sydney, NSW 2007, Australia
e-mails: tshannon38@gmail.com, Anthony.Shannon@uts.edu.au

Abstract

Sums of the first p Fibonacci numbers, S_{p}, are shown to be related to K in $F_{p}=K p \pm 1$, which is itself a useful indicator of primality for F_{p}. Digit sums of K, S_{p}, sums of $F_{p}{ }^{2}$ and Simson's identity were compared.

Keywords: Fibonacci numbers, Primality, Digit sums.
AMS Classification: 11B39, 11B50.

1 Introduction

The sum of the first n Fibonacci numbers is

$$
\begin{equation*}
\sum_{i=1}^{n} F_{n}=F_{n+2}-1 \tag{1.1}
\end{equation*}
$$

which, when $n=p$, becomes

$$
\begin{equation*}
S_{p}=F_{p+2}-1 \tag{1.2}
\end{equation*}
$$

Following on recent work [3-7], we compare this sum for the primes $3 \leq p \leq 113$ using the method of digit sums [2,7]. The digit sum in base b, of the digits of the number n, is often represented by $s_{b}(n)$ [1], and satisfies the congruence:

$$
\begin{equation*}
n \equiv s_{b}(n)(\bmod b-1) . \tag{1.3}
\end{equation*}
$$

When $b=10$, this congruence is the basis of high school techniques such as casting out nines and of divisibility tests such as those for 3 and 9 .

2 Digit sums of $\boldsymbol{S}_{\boldsymbol{p}}$

The sums of Fibonacci numbers and the corresponding digit sums (Tables 1 and 2) show distinctions between primes and composites (Table 2). F_{97}, if a prime, does not conform so that
it was checked with the factor $(k \mid K p \pm 1)$ technique $[3,4,6]$ which showed that it was indeed a composite, namely

$$
\begin{aligned}
F_{97} & =83621143489848422977 \\
& =193 \times 389 \times 1113805073322701
\end{aligned}
$$

with

$$
193=2 \times 97-1
$$

and

$$
389=4 \times 97+1 .
$$

However, either F_{7} or F_{37} do not conform, both having a digit sum of 6. F_{109}, if conforming, is a composite, and F_{113} is a prime. These results are generally in accord with the K results, from [6]

$$
\begin{equation*}
F_{p}=K p \pm 1 \tag{2.1}
\end{equation*}
$$

The K values appear to be more reliable.

\boldsymbol{p}	$\boldsymbol{S}_{\boldsymbol{p}}$	Digit sum	Parity	\boldsymbol{p}	$\boldsymbol{S}_{\boldsymbol{p}}$	Digit sum	Parity
$\mathbf{3}$	4	4	p	$\mathbf{5 9}$	2504730781960	7	c
$\mathbf{7}$	33	6	p	$\mathbf{6 1}$	6557470319841	8	p
$\mathbf{1 1}$	332	7	p	$\mathbf{6 7}$	117669030460993	1	c
$\mathbf{1 3}$	609	6	p	$\mathbf{7 1}$	806515533049392	9	p
$\mathbf{1 7}$	4180	4	p	$\mathbf{7 3}$	2111485077978049	1	p
$\mathbf{1 9}$	10945	1	c	$\mathbf{7 9}$	37889062373143905	6	c
$\mathbf{2 3}$	75024	9	p	$\mathbf{8 3}$	259695496911122584	7	p
$\mathbf{2 9}$	1346268	3	p	$\mathbf{8 9}$	4660046610375530308	4	c
$\mathbf{3 1}$	3524577	6	c	$\mathbf{9 7}$	21892295834555169025	1	c
$\mathbf{3 7}$	63245985	6	c	$\mathbf{1 0 1}$	1500520536206896083276	3	p
$\mathbf{4 1}$	433494436	4	c	$\mathbf{1 0 3}$	3928413764606871165729	6	p
$\mathbf{4 3}$	1134903169	1	p	$\mathbf{1 0 7}$	26925748508234281076008	7	c
$\mathbf{4 7}$	7778742048	9	p	$\mathbf{1 0 9}$	70492524767089125814113	6	c
$\mathbf{5 3}$	139583862444	3	c	$\mathbf{1 1 3}$	483162952612010163284884	4	p

Table 1. Digit sums of first p Fibonacci numbers and parity

$\boldsymbol{p}^{\boldsymbol{*}}$	Primes	Composites
$\mathbf{1}$	$3,7,8,9$	4,6
$\mathbf{3}$	$1,4,6,7,9$	3
$\mathbf{7}$	$4,6,9$	$1,6,7$
$\mathbf{9}$	3	$1,4,6,7$

Table 2. Digit sum for first p Fibonacci Numbers: [$p^{*}=$ right-end-digit]

\boldsymbol{p}^{*}	$\boldsymbol{F}_{\boldsymbol{p}+1}$	$\boldsymbol{F}_{\boldsymbol{p}-1}$
$\mathbf{1}$		\checkmark
$\mathbf{3}$	\checkmark	
7	\checkmark	
$\mathbf{9}$		\checkmark

Table 3. Divisibility of neighbours of F_{p} by p

3 Relationship of S_{p} and K in $F_{p}=K_{p} \pm 1$

One of the direct neighbours of F_{p} is divisible by p according to p^{*} in a neat pattern (Table 3) [3].

$1.1 p^{*}=3,7$

From (1.2) and the Fibonacci recurrence relation

$$
\begin{gather*}
S_{p}+1=F_{p+1}+K p-1 \tag{3.1}\\
F_{p+2}=F_{p+1}+F_{p} \tag{3.2}
\end{gather*}
$$

so that

$$
\begin{equation*}
K=\frac{1}{p}\left(S_{p}+2-F_{p+1}\right) . \tag{3.3}
\end{equation*}
$$

Both $\left(S_{p}+2\right)$ and F_{p+1} are divisible by $p ; K$ values (Table 4) from Equation (3.3) agree with those from Equation (2.1).

\boldsymbol{p}	Parity	\boldsymbol{K}	\boldsymbol{p}	Parity	\boldsymbol{K}
$\mathbf{3}$	p	1	$\mathbf{5 3}$	c	1005967758
$\mathbf{7}$	p	2	$\mathbf{6 7}$	c	670829406162
$\mathbf{1 3}$	p	18	$\mathbf{7 3}$	p	11048157986978
$\mathbf{1 7}$	p	94	$\mathbf{8 3}$	p	1195118711985006
$\mathbf{2 3}$	p	1246	$\mathbf{9 7}$	c	862073644225241474
$\mathbf{3 7}$	c	652914	$\mathbf{1 0 3}$	p	14568160545698020226
$\mathbf{4 3}$	p	10081266	$\mathbf{1 0 7}$	c	96118885585174929102
$\mathbf{4 7}$	p	63217342	$\mathbf{1 1 3}$	p	16332019981684334481118

Table 4. K values from Equation (3.3)

$1.2 p^{*}=1,9$

Since from repeating the Fibonacci recurrence relation

$$
\begin{align*}
F_{p+2} & =2 F_{p}+F_{p-1} \\
& =2(K p+1)+F_{p-1} \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
S_{p} & =2(K p+1)+F_{p-1}-1 \\
& =2 K p+1+F_{p-1} \tag{3.5}
\end{align*}
$$

then

$$
\begin{equation*}
K=\frac{1}{2 p}\left(S_{p}-1-F_{p-1}\right) . \tag{3.6}
\end{equation*}
$$

As for Section (3.1), K values agree with previous values [6,7]. The sums of digits of K from Tables 4 and 5 show clear distinctions for primes and composites (Table 6).

\boldsymbol{p}	Parity	\boldsymbol{K}	\boldsymbol{p}	Parity	\boldsymbol{K}
$\mathbf{1 1}$	p	8	$\mathbf{6 1}$	p	41061160360
$\mathbf{1 9}$	c	220	$\mathbf{7 1}$	p	4338894664368
$\mathbf{2 9}$	p	17732	$\mathbf{7 9}$	c	183194101578180
$\mathbf{3 1}$	c	43428	$\mathbf{8 9}$	c	19999768719154092
$\mathbf{4 1}$	c	4038540	$\mathbf{1 0 1}$	p	5674731128849674100
$\mathbf{5 9}$	c	16215627560	$\mathbf{1 0 9}$	c	494050431343748276624

Table 5. K values from Equation (3.6)

\boldsymbol{p}^{*}	Primes	Composites
$\mathbf{1}$	$1,2,8,9$	3,6
$\mathbf{3}$	$1,2,4,6,8,9$	3
$\mathbf{7}$	$1,2,4$	$6,8,9$
$\mathbf{9}$	2	$3,4,5,6$

Table 6. Digit sums of K

4 Sums of Fibonacci squares

The digit sums of Fibonacci squares were calculated from

$$
\begin{equation*}
F_{p} \times F_{p+1}=\sum_{i=1}^{p} F_{p}^{2} \tag{4.1}
\end{equation*}
$$

The digit sums generally show distinctions between primes and composites (Tables 7, 8) but not as reliably as K or S_{p}. The digit sums are simply obtained from the digit sums of F_{p} times the digit sums of F_{p+1}.

\boldsymbol{p}	Parity	$\boldsymbol{F}_{\boldsymbol{p}}$	$\boldsymbol{F}_{\boldsymbol{p} \boldsymbol{+}}$	$\boldsymbol{F}_{\boldsymbol{p}} \boldsymbol{F}_{\boldsymbol{p}+\boldsymbol{1}}$	\boldsymbol{p}	Parity	$\boldsymbol{F}_{\boldsymbol{p}}$	$\boldsymbol{F}_{\boldsymbol{p}+\boldsymbol{1}}$	$\boldsymbol{F}_{\boldsymbol{p}} \boldsymbol{F}_{\boldsymbol{p}+\boldsymbol{1}}$
$\mathbf{3}$	p	2	3	6	$\mathbf{5 9}$	c	8	9	9
$\mathbf{7}$	p	4	3	3	$\mathbf{6 1}$	p	8	8	1
$\mathbf{1 1}$	p	8	9	9	$\mathbf{6 7}$	c	5	6	3
$\mathbf{1 3}$	p	8	8	1	$\mathbf{7 1}$	p	1	9	9
$\mathbf{1 7}$	p	4	1	4	$\mathbf{7 3}$	p	1	1	1
$\mathbf{1 9}$	c	5	6	3	$\mathbf{7 9}$	c	4	3	3
$\mathbf{2 3}$	p	1	9	9	$\mathbf{8 3}$	p	8	9	9
$\mathbf{2 9}$	p	5	8	4	$\mathbf{8 9}$	c	4	1	4
$\mathbf{3 1}$	c	4	3	3	$\mathbf{9 7}$	c	1	1	1
$\mathbf{3 7}$	c	8	8	1	$\mathbf{1 0 1}$	p	5	8	4
$\mathbf{4 1}$	c	4	1	4	$\mathbf{1 0 3}$	p	4	5	2
$\mathbf{4 3}$	p	5	6	3	$\mathbf{1 0 7}$	c	8	8	1
$\mathbf{4 7}$	p	1	9	9	$\mathbf{1 0 9}$	c	8	8	1
$\mathbf{5 3}$	c	5	8	4	$\mathbf{1 1 3}$	p	4	1	4

Table 7. Digit sums of Fibonacci squares

$\boldsymbol{p}^{\boldsymbol{*}}$	Primes	Composites
$\mathbf{1}$	$1,4,9$	3,4
$\mathbf{3}$	$1,2,3,4,6,9$	4
$\mathbf{7}$	$3,4,9$	1,3
$\mathbf{9}$	4	$1,3,4,9$

Table 8. Digit sums

The digit sums 3 and 4 are clearly indeterminate for this index.

5 Simson's Identity

An approximation to this identity leads to the Golden Ratio [5], namely

$$
F_{n+1} F_{n-1} \approx F_{n}^{2}
$$

whereas the precise form is

$$
\begin{equation*}
F_{n+1} F_{n-1}=F_{n}^{2}+(-1)^{n} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{n+2} F_{n-2}=F_{n}^{2}+(-1)^{n-1} \tag{5.2}
\end{equation*}
$$

and the digit sums of these quantities show that the digit sum of F_{p}^{2} is either 1 or 7. (Compare the perfect numbers which always have a digit sum of 1 [7].) The composite F_{p} commonly have a digit sum of 7 when $p^{*}=1,3$, or 9 , but digit sum of 1 when $p^{*}=7$.

\boldsymbol{p}	Parity of $\boldsymbol{F}_{\boldsymbol{p}}$	$\boldsymbol{F}_{\boldsymbol{p}-1} \mathbf{X}$ $\boldsymbol{F}_{\boldsymbol{p}+\boldsymbol{1}}$	$\boldsymbol{F}_{\boldsymbol{p}-2} \mathbf{X}$ $\boldsymbol{F}_{\boldsymbol{p}+\mathbf{2}}$	$\boldsymbol{F}_{\boldsymbol{p}}^{2}$	\boldsymbol{p}	Parity of $\boldsymbol{F}_{\boldsymbol{p}}$	$\boldsymbol{F}_{\boldsymbol{p}-1} \mathbf{X}$ $\boldsymbol{F}_{\boldsymbol{p}+\mathbf{1}}$	$\boldsymbol{F}_{\boldsymbol{p}-2} \mathbf{X}$ $\boldsymbol{F}_{\boldsymbol{p}+\mathbf{2}}$	F_{p}^{2}		
$\mathbf{1 1}$	p	9	2	1	$\mathbf{7}$	p	6	8	7		
$\mathbf{3 1}$	c	6	8	7	$\mathbf{1 7}$	p	6	8	7		
$\mathbf{4 1}$	c	6	8	7	$\mathbf{3 7}$	c	9	2	1		
$\mathbf{6 1}$	p	9	2	1	$\mathbf{4 7}$	p	9	2	1		
$\mathbf{7 1}$	p	9	2	1	$\mathbf{6 7}$	c	6	8	7		
$\mathbf{1 0 1}$	p	6	8	7	$\mathbf{9 7}$	c	9	2	1		
$\mathbf{1 3}$	p	9	2	1	$\mathbf{1 0 7}$	c	9	2	1		
$\mathbf{2 3}$	p	9	2	1							
$\mathbf{4 3}$	p	6	8	7	$\mathbf{1 9}$	c	6	8	7		
$\mathbf{5 3}$	c	6	8	7	$\mathbf{2 9}$	p	6	8	7		
$\mathbf{7 3}$	p	9	2	1	$\mathbf{5 9}$	c	9	2	1		
$\mathbf{8 3}$	p	9	2	1	$\mathbf{7 9}$	c	6	8	7		
$\mathbf{1 0 3}$	p	6	8	7	$\mathbf{8 9}$	c	6	8	7		
$\mathbf{1 1 3}$	p	6	8	7	$\mathbf{1 0 9}$	c	9	2	1		

Table 9. Digit sums for F_{p}^{2}

6 Concluding comments

While the results are interesting because of the links, other indicators such as K or S_{p} are more useful for primality tests [6, 7]. Furthermore, digit sums provide patterns for further exploration in both pure [8] and applied mathematics [2] for university student projects at all levels, as do right-end-digits as integers (modulo 10) [9].

References

[1] Fujiwara, M., Y. Ogawa. Introduction to Truly Beautiful Mathematics. Tokyo: Chikuma Shobo, 2005.
[2] Grabner, P. J., T. Herendi, R. F. Tichy. Fractal Digital Sums and Codes. Applicable Algebra in Engineering, Communication and Computing, Vol. 8, 1997, No. 1, 33-39.
[3] Leyendekkers, J. V., A. G. Shannon. Fibonacci and Lucas Primes. Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 2, 49-59.
[4] Leyendekkers, J. V., A. G. Shannon. The Pascal-Fibonacci Numbers. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 3, 5-11.
[5] Leyendekkers, J. V., A. G. Shannon. The Decimal String of the Golden Ratio. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 1, 27-31.
[6] Leyendekkers, J. V., A. G. Shannon. Fibonacci Primes. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 2, 6-9.
[7] Leyendekkers, J. V., A. G. Shannon. Fibonacci Numbers with Prime Subscripts: Digital Sums for Primes versus Composites. Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 3, 45-49.
[8] Shallit, J. O. On Infinite Products Associated with Sums of Digits. Journal of Number Theory. Vol. 21, 1985, No. 2, 128-134.
[9] Watkins, J. J. Number Theory: A Historical Approach. Princeton and Oxford: Princeton University Press, 2014, 271-272.

