On some Pascal's like triangles. Part 6

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 105, Sofia–1113, Bulgaria e-mail: krat@bas.bg

> To my friend since kindergarden Evgeni Dimitrov for his 60-th Anniversary!

Abstract: A series of Pascal's like triangles with different forms are described and some of their propertiesa are given.

Keywords: Pascal triangle, Sequence.

AMS Classification: 11B37.

1 Introduction

In a series of the five papers [1, 2, 3, 4, 5], we discussed a new type of Pascal's like triangles. Triangles from the present form, but not with the present sense, are described in different publications, e.g. [6, 7, 8, 10].

2 Main results

 \mathbf{E}_1 :

Now, we complicate the form of the Pascal's like triangles from [1]. Let us start with the following examples:

0 2 1 3 21 6 6 3 1 2 **14** 12 6 4 3 $1 \ 2 \ 4$ 8 **30** 24 12 6 3 $1 \quad 2 \quad 4 \quad 8$ 16 $\mathbf{62}$ 48 24 12 6 3 $1 \ 2 \ 4 \ 8 \ 16 \ 32 \ \mathbf{126} \ 96 \ 48 \ 24 \ 12 \ 6 \ 3$.

\mathbf{E}_2 :							0						
						1	3	5					
					1	2	9	10	5				
				1	2	4	21	20	10	5			
			1	2	4	8	45	40	20	10	5		
		1	2	4	8	16	93	80	40	20	10	5	
	1	2	2 4	8	16	32	189	160	80	40	20	10	5
\mathbf{E}_3 :							0						
						3	4	5					
					3	6	12	10	5				
				3	6	12	28	20	10	5			
			3	6	12	24	60	40	20	10	5		
		3	6	12	24	48	124	80	40	20	10	5	
	3	6	12	24	48	96	252	160	80	40	20	10	E)

In [1] we discussed infinite triangles with the form

where $a_{i,1} = a_{i,2i-1}$ are arbitrary real (complex) numbers and for every natural number $i \ge 1$ and **1.** for every natural number j for which $2 \le j \le i$ it will be valid:

.

$$a_{i,j} = a_{i,j-1} + a_{i-1,j-1};$$

2. for every natural number j for which $i \le j \le 2i - 1$ it will be valid:

.

$$a_{i,j} = a_{i,j+1} + a_{i-1,j-1}$$

Now, we complicate the above scheme to the following form: $a_{i,1}$ and $a_{i,2i-1}$ are arbitrary real (complex) numbers (i.e., without the above condition for them to be equal) and for every natural number $i \ge 1$ and

1. for every natural number j for which $2 \le j \le i - 1$ it will be valid:

$$a_{i,j} = a_{i,j-1} + a_{i-1,j-1}$$

2. for every natural number j for which $i + 1 \le j \le 2i - 1$ it will be valid:

$$a_{i,j} = a_{i,j+1} + a_{i-1,j-1};$$

3. for $i \ge 2$:

$$a_{i,i} = a_{i-1,i-1} + \frac{a_{i,i-1} + a_{i,i+1}}{2}$$

Let each of the sequences $\{a_{i,1}\}_{i\geq 1}$ and $\{a_{2i-1,1}\}_{i\geq 1}$ be called a *generating sequence* and let each of the sequences $\{a_{i,i}\}_{i>1}$ be called a *generated sequence*.

We can prove, e.g., by induction

Lemma: For every two real (complex) numbers $p \ge 1$ and $q \ge 0$:

.

.

The *i*-th member of the generated sequence has the form

$$a_{i,i} = (2^{i-1} - 1) \cdot (p+q).$$

Hence, the *i*-th members of the generated sequences \mathbf{E}_1 , \mathbf{E}_2 and \mathbf{E}_3 are, respectively, $2(2^{i-1}-1), 3(2^{i-1}-1)$ and $4(2^{i-1}-1)$

In [1], the following triangle was discussed:

.

						1						
					1	2	1					
				1	2	4	2	1				
			1	2	4	8	4	2	1			
		1	2	4	8	16	8	4	2	1		
	1	2	4	8	16	32	16	8	4	2	1	
1	2	4	8	16	32	64	32	16	8	4	2	1
						-						

Therefore, the *i*-th member of its generated sequence is 2^{i-1} . Now, changing the forms of the generating sequences, we obtain the following new Pascal's like triangles.

\mathbf{E}_5 :							1						
						2	4	4					
					1	3	8	5	1				
				2	3	6	16	10	5	4			
			1	3	6	12	32	20	10	5	1		
		2	3	6	12	24	64	40	20	10	5	4	
	1	3	6	12	24	48	128	80	40	20	10	5	1
					•		•						
\mathbf{E}_6 :							1						
						2	5	6					
					1	3	10	7	1				
				2	3	6	20	14	7	6			
			1	3	6	12	40	28	14	7	1		
		2	3	6	12	24	80	56	28	14	7	6	
	1	3	6	12	24	48	160	112	56	28	14	7	1
					•								
\mathbf{E}_7 :							1						
						2	6	8					
					1	3	12	9	1				
				2	3	6	24	18	9	8			
			1	3	6	12	48	36	18	9	1		
		2	3	6	12	24	96	72	36	18	9	8	
	1	3	6	12	24	48	192	144	72	36	18	9	1

More general, we can consruct the triangle

.

.

Therefore, the *i*-th member of the generated sequence has the form

.

$$a_{i,i} = (p+1)2^{i-1}$$

Obviously, the *i*-th member of the generated sequences \mathbf{E}_4 , \mathbf{E}_5 , \mathbf{E}_6 and \mathbf{E}_7 are, respectively, $3 \cdot 2^{i-1}, 4 \cdot 2^{i-1}, 5 \cdot 2^{i-1}$ and $6 \cdot 2^{i-1}$.

On the other hand, we can see that we can construct a triangle with other generating sequences, which has the same generated sequence as, e.g., the last triangle:

 E_8 : $\mathbf{24}$ $\mathbf{48}$ $1 \ 5 \ 10$ $14 \ 7 \ 1$

Hence, we can consruct the more general form of a triangle

$$\begin{array}{cccccccc} & & & & \mathbf{1} \\ & & & 2p & \mathbf{p} + \mathbf{q} + \mathbf{1} & 2q \\ & & 1 & 2p + 1 & \mathbf{2}(\mathbf{p} + \mathbf{q} + \mathbf{1}) & 2q + 1 & 1 \\ 2p & 2p + 1 & 4p + 2 & \mathbf{4}(\mathbf{p} + \mathbf{q} + \mathbf{1}) & 4q + 2 & 2q + 1 & 2q \end{array}$$

Therefore, the *i*-th member of the generated sequence of this triangle has the form

$$a_{i,i} = (p+q+1)2^{i-1}.$$

Of course, we can construct a lot of other forms of Pascal's like triangles. For example:

Its *i*-th member of the generated sequence has the form

$$a_{i,i} = 6(2^{i-1} - 1) + 3.$$

Conclusion

In Conclusion, we study three Pascal's like triangles with special generating sequences: Fibonacci $(f_0 = 0, f_1 = 1, f_2 = 1, f_3 = 2, f_4 = 3, f_5 = 5, ...)$, Lucas (2, 1, 3, 4, 7, 11, ...), Jacobstal (1, 1, 3, 5, 11, 21, ...) and Jacobstal–Lucas (1, 5, 7, 17, 31, 65, ...) sequences (cf. [1, 7, 9, 11]).

In the first case, the left generating sequence is the Fibonacci sequence and the right generating sequence is the Lucas sequence, but starting with its second member:

E_{10} :							1						
						1	3	3					
					2	3	8	7	4				
				3	5	8	21	18	11	7			
			5	8	13	21	55	47	29	18	11		
		8	13	21	34	55	144	123	76	47	29	18	
	13	21	34	55	89	144	366	322	199	123	76	47	29

Therefore, the generated sequence coincides with sequence $\{f_{2k}\}_{k\geq 1}$.

In the second case, the left generating sequence is the Fibonacci sequence, but starting with its third member and the right generating sequence is the Lucas sequence:

. .

${f E}_{11}:$							2						
						3	4	1					
					5	8	10	4	3				
				8	13	21	26	11	7	4			
			13	21	34	55	68	29	18	11	7		
		21	34	55	89	144	178	76	47	29	18	11	
	34	55	89	144	233	377	466	199	123	76	47	29	18

Therefore, the generated sequence coincides with sequence $\{2f_{2k+1}\}_{k\geq 1}$.

•

In the third case, the left generating sequence is the Jacobstal sequence and the right generating sequence is the Jacobstal-Lucas sequence:

•

\mathbf{E}_{12} :						1					
					1	4	5				
				3	4	12	12	7			
			5	8	12	36	36	24	17		
		11	16	24	36	108	108	72	48	31	
	21	32	48	72	108	324	324	216	144	96	65

Therefore, the *i*-th member of the generated sequence has the form

$$a_{i,i} = 4.3^{i-2}$$

•

for $i \geq 2$.

In a next paper, similarly to [4], three-dimensional analogues of the described here Pascal's like triangles will be discussed.

References

- [1] Atanassov, K., On some Pascal's like triangles. Part 1. *Notes on Number Theory and Discrete Mathematics*, Vol. 13, 2007, No. 1, 31–36.
- [2] Atanassov, K., On some Pascal's like triangles. Part 2. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 2, 10–14.
- [3] Atanassov, K., On some Pascal's like triangles. Part 3. *Notes on Number Theory and Discrete Mathematics*, Vol. 13, 2007, No. 3, 20–25.
- [4] Atanassov, K., On some Pascal's like triangles. Part 4. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 4, 11–20.
- [5] Atanassov, K., On some Pascal's like triangles. Part 5. *Advanced Studies in Contemporary Mathematics*, Vol. 21, 2011, No. 3, 291–299.
- [6] Bondarenko, B., *Generalized Pascal's Triangles and Pyramids Their Fractals, Graphs and Applications*, Tashkent, Fan, 1990 (in Russian).
- [7] Čerin, Z., Sums of squares and products of Jacobsthal numbers. *Journal of Integer Sequences*, Vol. 10, 2007, Article 07.2.5.
- [8] Goldwasser, J., W. Klostermeyer, M. Mays, G. Trapp, The density of ones in Pascal's rhombus. *Discrete Mathematics*, Vol. 204, 1999, 231–236.
- [9] Horadam, A., Basic properties if a certain generalized sequence of numbers. *The Fibonacci Quarterly*, Vol. 3, 1965, 161–176.
- [10] Leyendekkers, J., A. Shannon, J. Rybak. *Pattern recognition: Modular Rings & Integer Structure*. Raffles KvB Monograph, No. 9, North Sydney, 2007.
- [11] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, 2006.