On some Pascal's like triangles. Part 6

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
e-mail: krat@bas.bg
To my friend since kindergarden
Evgeni Dimitrov for his 60-th Anniversary!

Abstract

A series of Pascal's like triangles with different forms are described and some of their propertiesa are given.

Keywords: Pascal triangle, Sequence.
AMS Classification: 11B37.

1 Introduction

In a series of the five papers [1,2,3,4,5], we discussed a new type of Pascal's like triangles. Triangles from the present form, but not with the present sense, are described in different publications, e.g. $[6,7,8,10]$.

2 Main results

Now, we complicate the form of the Pascal's like triangles from [1]. Let us start with the following examples:

In [1] we discussed infinite triangles with the form

\[

\]

where $a_{i, 1}=a_{i, 2 i-1}$ are arbitrary real (complex) numbers and for every natural number $i \geq 1$ and 1. for every natural number j for which $2 \leq j \leq i$ it will be valid:

$$
a_{i, j}=a_{i, j-1}+a_{i-1, j-1}
$$

2. for every natural number j for which $i \leq j \leq 2 i-1$ it will be valid:

$$
a_{i, j}=a_{i, j+1}+a_{i-1, j-1} .
$$

Now, we complicate the above scheme to the following form: $a_{i, 1}$ and $a_{i, 2 i-1}$ are arbitrary real (complex) numbers (i.e., without the above condition for them to be equal) and for every natural number $i \geq 1$ and

1. for every natural number j for which $2 \leq j \leq i-1$ it will be valid:

$$
a_{i, j}=a_{i, j-1}+a_{i-1, j-1}
$$

2. for every natural number j for which $i+1 \leq j \leq 2 i-1$ it will be valid:

$$
a_{i, j}=a_{i, j+1}+a_{i-1, j-1}
$$

3. for $i \geq 2$:

$$
a_{i, i}=a_{i-1, i-1}+\frac{a_{i, i-1}+a_{i, i+1}}{2} .
$$

Let each of the sequences $\left\{a_{i, 1}\right\}_{i \geq 1}$ and $\left\{a_{2 i-1,1}\right\}_{i \geq 1}$ be called a generating sequence and let each of the sequences $\left\{a_{i, i}\right\}_{i \geq 1}$ be called a generated sequence.

We can prove, e.g., by induction
Lemma: For every two real (complex) numbers $p \geq 1$ and $q \geq 0$:

$$
\begin{array}{ccccccccc}
& & & 2 p-1 & \mathbf{p}+\mathbf{q} & 2 q+1 & & & \\
& & & 2 p-1 & 4 p-2 & \mathbf{3}(\mathbf{p}+\mathbf{q}) & 4 q+2 & 2 q+1 & \\
& & & 4 p-2 & 8 p-4 & \mathbf{7}(\mathbf{p}+\mathbf{q}) & 8 q+4 & 4 q+2 & 2 q+1 \\
& 2 p-1 & 4 p-2 & 8 p & \\
2 p-1 & 4 p-2 & 8 p-4 & 16 p-8 & \mathbf{1 5}(\mathbf{p}+\mathbf{q}) & 16 q+8 & 8 q+4 & 4 q+2 & 2 q+1
\end{array}
$$

The i-th member of the generated sequence has the form

$$
a_{i, i}=\left(2^{i-1}-1\right) \cdot(p+q) .
$$

Hence, the i-th members of the generated sequences $\mathbf{E}_{1}, \mathbf{E}_{2}$ and \mathbf{E}_{3} are, respectively, $2\left(2^{i-1}-1\right), 3\left(2^{i-1}-1\right)$ and $4\left(2^{i-1}-1\right)$

In [1], the following triangle was discussed:

							$\mathbf{1}$						
					1	$\mathbf{2}$	1						
				1	2	$\mathbf{4}$	2	1					
			1	2	4	$\mathbf{8}$	4	2	1				
			1	2	4	8	$\mathbf{1 6}$	8	4	2	1		
		1	2	4	8	16	$\mathbf{3 2}$	16	8	4	2	1	
	1	2	4	8	16	32	$\mathbf{6 4}$	32	16	8	4	2	1

Therefore, the i-th member of its generated sequence is 2^{i-1}. Now, changing the forms of the generating sequences, we obtain the following new Pascal's like triangles.

$\mathbf{E}_{5}:$							$\mathbf{1}$						
						2	$\mathbf{4}$	4					
					1	3	$\mathbf{8}$	5	1				
				2	3	6	$\mathbf{1 6}$	10	5	4			
			1	3	6	12	$\mathbf{3 2}$	20	10	5	1		
		2	3	6	12	24	$\mathbf{6 4}$	40	20	10	5	4	
	1	3	6	12	24	48	$\mathbf{1 2 8}$	80	40	20	10	5	1

E_{6} :

						$\mathbf{1}$						
					2	$\mathbf{5}$	6					
				1	3	$\mathbf{1 0}$	7	1				
			2	3	6	$\mathbf{2 0}$	14	7	6			
		1	3	6	12	$\mathbf{4 0}$	28	14	7	1		
	2	3	6	12	24	$\mathbf{8 0}$	56	28	14	7	6	
1	3	6	12	24	48	$\mathbf{1 6 0}$	112	56	28	14	7	1

\mathbf{E}_{7} :

							$\mathbf{1}$					
					2	$\mathbf{6}$	8					
				1	3	$\mathbf{1 2}$	9	1				
			2	3	6	$\mathbf{2 4}$	18	9	8			
		1	3	6	12	$\mathbf{4 8}$	36	18	9	1		
	2	3	6	12	24	$\mathbf{9 6}$	72	36	18	9	8	
1	3	6	12	24	48	$\mathbf{1 9 2}$	144	72	36	18	9	1

More general, we can consruct the triangle

$$
\begin{array}{cccccc}
& & \mathbf{c} & \mathbf{1} & & \\
& & 2 & \mathbf{p}+\mathbf{2} & 2 p & \\
& 1 & 3 & \mathbf{2 p}+\mathbf{4} & 2 p+1 & 1 \\
2 & 3 & 6 & \mathbf{4 k}+\mathbf{8} & 4 p+2 & 2 p+1
\end{array} \quad 2 p
$$

Therefore, the i-th member of the generated sequence has the form

$$
a_{i, i}=(p+1) 2^{i-1} .
$$

Obviously, the i-th member of the generated sequences $\mathbf{E}_{4}, \mathbf{E}_{5}, \mathbf{E}_{6}$ and \mathbf{E}_{7} are, respectively, $3.2^{i-1}, 4.2^{i-1}, 5.2^{i-1}$ and 6.2^{i-1}.

On the other hand, we can see that we can construct a triangle with other generating sequences, which has the same generated sequence as, e.g., the last triangle:

$$
\begin{array}{lllllllllllll}
\mathbf{E}_{8}: & & & & & & \mathbf{1} \\
& & & & & 4 & \mathbf{6} & 6 & & & & & \\
& & & & 1 & 5 & \mathbf{1 2} & 7 & 1 & & & & \\
& & & & 5 & 10 & \mathbf{2 4} & 14 & 7 & 6 & & & \\
& & & 4 & 5 & 10 & & & & \\
& & 1 & 5 & 10 & 20 & \mathbf{4 8} & 28 & 14 & 7 & 1 & & \\
& & & 5 & 10 & 20 & 40 & \mathbf{9 6} & 56 & 28 & 14 & 7 & 6 \\
& & 4 & 5 & & \\
& 1 & 5 & 10 & 20 & 40 & 80 & \mathbf{1 9 2} & 112 & 56 & 28 & 14 & 7 \\
\hline
\end{array}
$$

Hence, we can consruct the more general form of a triangle

$$
\begin{array}{ccccccc}
& & & & \mathbf{1} \\
& & & 2 p & \mathbf{p}+\mathbf{q}+\mathbf{1} & 2 q & \\
& 1 & 2 p+1 & \mathbf{2}(\mathbf{p}+\mathbf{q}+\mathbf{1}) & 2 q+1 & 1 & \\
2 p & 2 p+1 & 4 p+2 & \mathbf{4}(\mathbf{p}+\mathbf{q}+\mathbf{1}) & 4 q+2 & 2 q+1 & 2 q
\end{array}
$$

Therefore, the i-th member of the generated sequence of this triangle has the form

$$
a_{i, i}=(p+q+1) 2^{i-1}
$$

Of course, we can construct a lot of other forms of Pascal's like triangles. For example:

Its i-th member of the generated sequence has the form

$$
a_{i, i}=6\left(2^{i-1}-1\right)+3 .
$$

3 Conclusion

In Conclusion, we study three Pascal's like triangles with special generating sequences: Fibonacci $\left(f_{0}=0, f_{1}=1, f_{2}=1, f_{3}=2, f_{4}=3, f_{5}=5, \ldots\right)$, Lucas $(2,1,3,4,7,11, \ldots)$, Jacobstal $(1,1,3,5,11,21, \ldots)$ and Jacobstal-Lucas $(1,5,7,17,31,65, \ldots)$ sequences (cf. [1, 7, 9, 11]).

In the first case, the left generating sequence is the Fibonacci sequence and the right generating sequence is the Lucas sequence, but starting with its second member:

$\mathbf{E}_{10}:$						$\mathbf{1}$						
						1	$\mathbf{3}$	3				
				2	3	$\mathbf{8}$	7	4				
			3	5	8	$\mathbf{2 1}$	18	11	7			
			5	8	13	21	$\mathbf{5 5}$	47	29	18	11	
	8	13	21	34	55	$\mathbf{1 4 4}$	123	76	47	29	18	
13	21	34	55	89	144	$\mathbf{3 6 6}$	322	199	123	76	47	29

Therefore, the generated sequence coincides with sequence $\left\{f_{2 k}\right\}_{k \geq 1}$.
In the second case, the left generating sequence is the Fibonacci sequence, but starting with its third member and the right generating sequence is the Lucas sequence:

E_{11} :	2									
				3	4	1				
			5	8	10	4	3			
		8	13	21	26	11	7	4		
	13	21	34	55	68	29	18	11	7	
	2134	55	89	144	178	76	47	29	18	1
34	5589	144	233	377	466	199	123	76		

Therefore, the generated sequence coincides with sequence $\left\{2 f_{2 k+1}\right\}_{k \geq 1}$.
In the third case, the left generating sequence is the Jacobstal sequence and the right generating sequence is the Jacobstal-Lucas sequence:

$\mathbf{E}_{12}:$						$\mathbf{1}$					
					1	$\mathbf{4}$	5				
				3	4	$\mathbf{1 2}$	12	7			
			5	8	12	$\mathbf{3 6}$	36	24	17		
		11	16	24	36	$\mathbf{1 0 8}$	108	72	48	31	
	21	32	48	72	108	$\mathbf{3 2 4}$	324	216	144	96	65

Therefore, the i-th member of the generated sequence has the form

$$
a_{i, i}=4.3^{i-2}
$$

for $i \geq 2$.
In a next paper, similarly to [4], three-dimensional analogues of the described here Pascal's like triangles will be discussed.

References

[1] Atanassov, K., On some Pascal's like triangles. Part 1. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 1, 31-36.
[2] Atanassov, K., On some Pascal's like triangles. Part 2. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 2, 10-14.
[3] Atanassov, K., On some Pascal's like triangles. Part 3. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 3, 20-25.
[4] Atanassov, K., On some Pascal's like triangles. Part 4. Notes on Number Theory and Discrete Mathematics, Vol. 13, 2007, No. 4, 11-20.
[5] Atanassov, K., On some Pascal's like triangles. Part 5. Advanced Studies in Contemporary Mathematics, Vol. 21, 2011, No. 3, 291-299.
[6] Bondarenko, B., Generalized Pascal's Triangles and Pyramids - Their Fractals, Graphs and Applications, Tashkent, Fan, 1990 (in Russian).
[7] Čerin, Z., Sums of squares and products of Jacobsthal numbers. Journal of Integer Sequences, Vol. 10, 2007, Article 07.2.5.
[8] Goldwasser, J., W. Klostermeyer, M. Mays, G. Trapp, The density of ones in Pascal's rhombus. Discrete Mathematics, Vol. 204, 1999, 231-236.
[9] Horadam, A., Basic properties if a certain generalized sequence of numbers. The Fibonacci Quarterly, Vol. 3, 1965, 161-176.
[10] Leyendekkers, J., A. Shannon, J. Rybak. Pattern recognition: Modular Rings \& Integer Structure. Raffles KvB Monograph, No. 9, North Sydney, 2007.
[11] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, 2006.

