An equation involving Dedekind's function

Cristinel Mortici ${ }^{1,2}$
${ }^{1}$ Valahia University of Târgovişte, Department of Mathematics
Bd. Unirii 18, 130082, Târgovişte, Romania
${ }^{2}$ Academy of Romanian Scientists
Splaiul Independenței 54, 050094 Bucharest, Romania
e-mail: cristinel.mortici@hotmail.com

Abstract: In this note we solve the equation

$$
\frac{1}{\psi\left(a^{2}\right)}+\frac{1}{\psi\left(b^{2}\right)}+\frac{1}{\psi\left(c^{2}\right)}=\frac{1}{\psi(a b)}+\frac{1}{\psi(b c)}+\frac{1}{\psi(c a)},
$$

where ψ is Dedekind's function.
Keywords: Dedekind's function; inequalities.
AMS Classification: 11A25, 11A41.

1 Introduction and Results

If $n \geq 2$ is integer, and $n=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{k}^{\alpha_{k}}$ is its decomposition in prime factors, then Dedekind's function ψ is defined by the formula

$$
\psi(n)=n\left(1+\frac{1}{p_{1}}\right)\left(1+\frac{1}{p_{2}}\right) \cdots\left(1+\frac{1}{p_{k}}\right),
$$

while $\psi(1)=1$.
We prove the following result
Theorem 1. For every integers $k, a, b \geq 2$, the following inequality holds true:

$$
\begin{equation*}
\psi(a b) \geq \sqrt[k]{\psi\left(a^{k}\right) \psi\left(b^{k}\right)} \tag{1}
\end{equation*}
$$

This inequality is strict if $k \geq 3$.
Equality $\psi(a b)=\sqrt{\psi\left(a^{2}\right) \psi\left(b^{2}\right)}$ holds if and only if a and b have the same prime factors.
As a consequence, we prove the next

Theorem 2 If integers $a, b, c \geq 2$ satisfy

$$
\begin{equation*}
\frac{1}{\psi\left(a^{2}\right)}+\frac{1}{\psi\left(b^{2}\right)}+\frac{1}{\psi\left(c^{2}\right)}=\frac{1}{\psi(a b)}+\frac{1}{\psi(b c)}+\frac{1}{\psi(c a)} \tag{2}
\end{equation*}
$$

then $a=b=c$.
Similar results involving Euler totient function and other arithmetic functions were established in [1].

2 Proofs

Proof of Theorem 1. Let us denote

$$
\begin{aligned}
& \psi(a)=a \cdot \prod_{i \in I}\left(1+\frac{1}{p_{i}}\right) \cdot \prod_{j \in J}\left(1+\frac{1}{q_{j}}\right) \\
& \psi(b)=b \cdot \prod_{i \in I}\left(1+\frac{1}{p_{i}}\right) \cdot \prod_{s \in S}\left(1+\frac{1}{r_{s}}\right)
\end{aligned}
$$

where p_{i} divide both a and b, while $\left(q_{j}, b\right)=1$ and $\left(r_{s}, a\right)=1$. Cases I or J or S empty are accepted.

As

$$
\begin{gathered}
\psi\left(a^{k}\right)=a^{k} \cdot \prod\left(1+\frac{1}{p_{i}}\right) \cdot \prod\left(1+\frac{1}{q_{j}}\right) \\
\psi\left(b^{k}\right)=b^{k} \cdot \prod\left(1+\frac{1}{p_{i}}\right) \cdot \prod\left(1+\frac{1}{r_{s}}\right) \\
\psi(a b)=a b \cdot \prod\left(1+\frac{1}{p_{i}}\right) \cdot \prod\left(1+\frac{1}{q_{j}}\right) \cdot \prod\left(1+\frac{1}{r_{s}}\right),
\end{gathered}
$$

we have

$$
\begin{aligned}
& \psi\left(a^{k}\right) \psi\left(b^{k}\right)=a^{k} b^{k} \prod\left(1+\frac{1}{p_{i}}\right)^{2} \cdot \prod\left(1+\frac{1}{q_{j}}\right) \cdot \prod\left(1+\frac{1}{r_{s}}\right) \leq \\
& \leq a^{k} b^{k} \prod\left(1+\frac{1}{p_{i}}\right)^{k} \cdot \prod\left(1+\frac{1}{q_{j}}\right)^{k} \cdot \prod\left(1+\frac{1}{r_{s}}\right)^{k}=\psi^{k}(a b)
\end{aligned}
$$

This follows from

$$
\begin{equation*}
\prod\left(1+\frac{1}{p_{i}}\right)^{2} \leq \prod\left(1+\frac{1}{p_{i}}\right)^{k} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod\left(1+\frac{1}{q_{j}}\right) \leq \prod\left(1+\frac{1}{q_{j}}\right)^{k} \text { and } \prod\left(1+\frac{1}{r_{s}}\right) \leq \prod\left(1+\frac{1}{r_{s}}\right)^{k} \tag{4}
\end{equation*}
$$

Equality in (3) appears when $k=2$ or $I=\emptyset$, and equality in (4) appears when $J=\emptyset$ and $S=\emptyset$.
Proof of Theorem 2. Using (1) with $k=2$ and AM-GM means inequality, we get

$$
\frac{1}{\psi(a b)} \leq \sqrt{\frac{1}{\psi\left(a^{2}\right)} \cdot \frac{1}{\psi\left(b^{2}\right)}} \leq \frac{1}{2}\left(\frac{1}{\psi\left(a^{2}\right)}+\frac{1}{\psi\left(b^{2}\right)}\right) .
$$

By adding analogue inequalities

$$
\begin{aligned}
\frac{1}{\psi(b c)} & \leq \frac{1}{2}\left(\frac{1}{\psi\left(b^{2}\right)}+\frac{1}{\psi\left(c^{2}\right)}\right) \\
\frac{1}{\psi(c a)} & \leq \frac{1}{2}\left(\frac{1}{\psi\left(c^{2}\right)}+\frac{1}{\psi\left(a^{2}\right)}\right)
\end{aligned}
$$

we deduce

$$
\frac{1}{\psi(a b)}+\frac{1}{\psi(b c)}+\frac{1}{\psi(c a)} \leq \frac{1}{\psi\left(a^{2}\right)}+\frac{1}{\psi\left(b^{2}\right)}+\frac{1}{\psi\left(c^{2}\right)}
$$

Equation (2) is equality case in previous inequality. As stated in Theorem 1, equality holds when a, b, c have the same prime factors and moreover, $\psi\left(a^{2}\right)=\psi\left(b^{2}\right)=\psi\left(c^{2}\right)$. This attracts $a=b=c$ and the assertion is proved.

Acknowledgement

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI project number PN-II-ID-PCE-2011-3-0087.

References

[1] Mortici, C. On arithmetic functions means, Intern. J. Math. Educ. Sci. Tech., Vol. 42, 2010, No. 2, 229-235.

