Generalized Euler-Seidel method for second order recurrence relations

M. Cetin Firengiz ${ }^{1, *}$ and A. Dil 2
${ }^{1}$ Department of Mathematics Education, Başkent University
Baglica 06810 Ankara, Turkey
e-mail: mcetin@baskent.edu.tr
${ }^{2}$ Department of Mathematics, Akdeniz University
07058 Antalya, Turkey
e-mail: adil@akdeniz.edu.tr
* Corresponding author

Abstract

We obtain identities for the generalized second order recurrence relation by using the generalized Euler-Seidel matrix with parameters x, y. As a consequence, we give some properties and generating functions of well-known special integer sequences. Keywords: Generalized Euler-Seidel matrix, Fibonacci sequence, Lucas sequence, Pell sequence, Jacobsthal sequence, Generating function.

AMS Classification: 11B39, 11B83.

1 Introduction

Let $\left(a_{n}\right)$ be a sequence. In [2], the Euler-Seidel matrix associated with this sequence is determined recursively by the formula

$$
\begin{align*}
a_{n}^{0} & =a_{n} \quad(n \geq 0) \\
a_{n}^{k} & =a_{n}^{k-1}+a_{n+1}^{k-1} \quad(n \geq 0, k \geq 1) . \tag{1}
\end{align*}
$$

From relation (1), it can be seen that the first row and the first column can be transformed into each other via the well known binomial inverse pair as,

$$
\begin{equation*}
a_{0}^{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k}^{0}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a_{n}^{0}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} a_{0}^{k} \tag{3}
\end{equation*}
$$

Also any entry a_{n}^{k} can be written in terms of the initial sequence as:

$$
\begin{equation*}
a_{n}^{k}=\sum_{i=0}^{k}\binom{k}{i} a_{n+i}^{0} \tag{4}
\end{equation*}
$$

Proposition 1. (Euler) [4] Let

$$
a(t)=\sum_{n=0}^{\infty} a_{n}^{0} t^{n}
$$

be the generating function of the initial sequence $\left(a_{n}^{0}\right)$. Then the generating function of the sequence (a_{0}^{n}) is

$$
\begin{equation*}
\bar{a}(t)=\sum_{n=0}^{\infty} a_{0}^{n} t^{n}=\frac{1}{1-t} a\left(\frac{t}{1-t}\right) . \tag{5}
\end{equation*}
$$

Proposition 2. (Seidel) [9] Let

$$
A(t)=\sum_{n=0}^{\infty} a_{n}^{0} \frac{t^{n}}{n!}
$$

be the exponential generating function of the initial sequence $\left(a_{n}^{0}\right)$. Then the exponential generating function of the sequence $\left(a_{0}^{n}\right)$ is

$$
\begin{equation*}
\bar{A}(t)=\sum_{n=0}^{\infty} a_{0}^{n} \frac{t^{n}}{n!}=e^{t} A(t) \tag{6}
\end{equation*}
$$

In fact, it is possible to state a more general result than (6). The following equation gives relation between exponential generating function of columns (or rows) with the exponential generating function of the initial sequence (see [2]).

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n}^{k} \frac{u^{k}}{k!} \frac{t^{n}}{n!}=e^{u} A(t+u) \tag{7}
\end{equation*}
$$

In [7] there are applications of Euler-Seidel matrix for hyperharmonic and r-Stirling numbers. Also authors introduced "symmetric infinite matrix" and give some applications in [3].

In [5] the generalized second order recurrence sequence $\left\{W_{n}(a, b ; p, q)\right\}$ is defined as for $n \geq 0$

$$
\begin{equation*}
W_{n+2}=p W_{n+1}-q W_{n} \tag{8}
\end{equation*}
$$

with initial conditions

$$
W_{0}=a, \quad W_{1}=b,
$$

where $p^{2}-4 q>0$. Let the roots of the equation $t^{2}-p t+q=0$ be $\alpha=\frac{p+\sqrt{p^{2}-4 q}}{2}$ and $\beta=\frac{p-\sqrt{p^{2}-4 q}}{2}$. Then W_{n} can be written in the form

$$
\begin{equation*}
W_{n}=A \alpha^{n}+B \beta^{n}, \tag{9}
\end{equation*}
$$

where $A=\frac{b-a \beta}{\alpha-\beta}$ and $B=\frac{a \alpha-b}{\alpha-\beta}$. The following generating functions of $\left\{W_{n}\right\}$ are given in $[6,8]$ as:

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{n} t^{n}=\frac{a+(b-p a) t}{1-p t+q t^{2}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{n} \frac{t^{n}}{n!}=A e^{\alpha t}+B e^{\beta t} \tag{11}
\end{equation*}
$$

Mező gave the generating functions of the general second-order recurrence relations in [8]. Here, we get some relation and generating functions of the general second-order recurrence relations by using generalized Euler-Seidel matrices.

The special cases of $\left\{W_{n}(a, b ; p, q)\right\}$ give Fibonacci numbers F_{n} (Oeis A000045), Lucas numbers L_{n} (Oeis A000032), Pell numbers (or Silver Fibonacci numbers) P_{n} (Oeis A000129), Pell-Lucas numbers Q_{n} (Oeis A002203), Jacobsthal numbers J_{n} (Oeis A001045), JacobsthalLucas numbers j_{n} (Oeis A014551), Bronze Fibonacci numbers \mathcal{B}_{n} (Oeis A006190), Signed Fibonacci numbers \mathcal{F}_{n} (Oeis A039834), Signed Pell numbers \mathcal{P}_{n} (Oeis A215936).

Also we get the sequences; D_{n} : denominators of continued fraction convergents to $\sqrt{5}$ (Oeis A001076) and N_{n} : numerators of continued fraction convergents to $\sqrt{2}$ (Oeis A001333) as follows:

$$
\begin{array}{ll}
W_{n}(0,1 ; 1,-1)=F_{n}, & W_{n}(2,1 ; 1,-1)=L_{n}, \\
W_{n}(0,1 ; 2,-1)=P_{n}, & W_{n}(2,2 ; 2,-1)=Q_{n}, \\
W_{n}(0,1 ; 1,-2)=J_{n}, & W_{n}(2,1 ; 1,-2)=j_{n}, \\
W_{n}(0,1 ; 3,-1)=\mathcal{B}_{n}, & W_{n}(1,1 ;-1,-1)=\mathcal{F}_{n}, \\
W_{n}(0,1 ;-2,-1)=\mathcal{P}_{n}, & W_{n}(0,1 ; 4,-1)=D_{n}, \\
W_{n}(1,1 ; 2,-1)=N_{n} . &
\end{array}
$$

2 Generalized Euler-Seidel matrices with two parameters

In this section, we consider the generalized Euler-Seidel matrix, which is given in [1] with parameters x, y. We obtain the connection between the generating functions of the initial sequence and the first column entries of the generalized Euler-Seidel matrices.

Let us consider a given sequence $\left(a_{n}\right)_{n \geq 0}$. Generalized Euler-Seidel matrix with parameters x and y (see [1]) corresponding to this sequence is recursively defined by the formulae

$$
\begin{align*}
a_{n}^{0} & =a_{n} \quad(n \geq 0) \tag{12}\\
a_{n}^{k}(x, y) & =x a_{n}^{k-1}+y a_{n+1}^{k-1} \quad(n \geq 0, k \geq 1 \text { positive integers }) .
\end{align*}
$$

where a_{n}^{k} represents the k-th row and n-th column entry and x and y are nonzero real parameters; i.e;

$$
\left(\begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & a_{n}^{k-1} & a_{n+1}^{k-1} & \cdot & \cdot & \cdot \\
& & & x \downarrow & \swarrow y & & & \\
\cdot & \cdot & \cdot & a_{n}^{k} & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{array}\right)
$$

From now on for the sake of simplicity we represent $a_{n}^{k}(x, y)$ with a_{n}^{k}.
The following proposition gives the relation between the any entry of the matrix and the initial sequence.

Proposition 3. [1] We have

$$
\begin{equation*}
a_{n}^{k}=\sum_{i=0}^{k}\binom{k}{i} x^{k-i} y^{i} a_{n+i}^{0} . \tag{13}
\end{equation*}
$$

Proof. By induction on $n+k$.
The first row and column can be transformed into each other via the well known binomial inverse pair as follows.

Corollary 4.

$$
\begin{equation*}
a_{0}^{n}=x^{n} \sum_{i=0}^{n}\binom{n}{i}\left(\frac{y}{x}\right)^{i} a_{i}^{0} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}^{0}=\frac{1}{y^{n}} \sum_{i=0}^{n}\binom{n}{i}(-x)^{n-i} a_{0}^{i} . \tag{15}
\end{equation*}
$$

Generating Functions. We give connections between the generating functions of the initial sequences and the first column entries.

Proposition 5. The recurrence (12) gives the following relation:

$$
\begin{equation*}
\overline{a_{x, y}}(t)=\frac{1}{1-x t} a_{x, y}\left(\frac{y t}{1-x t}\right) \tag{16}
\end{equation*}
$$

where

$$
\overline{a_{x, y}}(t)=\sum_{n=0}^{\infty} a_{0}^{n} t^{n} \quad \text { and } \quad a_{x, y}(t)=\sum_{n=0}^{\infty} a_{n}^{0} t^{n} .
$$

Proof. Considering (12) we write

$$
\overline{a_{x, y}}(t)=\sum_{n=0}^{\infty}\left(\sum_{r=0}^{n}\binom{n}{r} x^{n-r} y^{r} a_{r}^{0}\right) t^{n} .
$$

By changing the order of the above sums and using Newton binomial sums formula we obtain

$$
\begin{aligned}
\overline{a_{x, y}}(t) & =\sum_{r=0}^{\infty}\left(\frac{y}{x}\right)^{r} a_{r}^{0} \sum_{n=0}^{\infty}\binom{n+r}{r}(x t)^{n+r} \\
& =\frac{1}{1-x t} \sum_{r=0}^{\infty} a_{r}^{0}\left(\frac{y t}{1-x t}\right)^{r} .
\end{aligned}
$$

This completes the proof.
Now we give the generalization of the equation (7).
Proposition 6. For the a_{n}^{k} entries of the Generalized Euler-Seidel Matrices we have:

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n}^{k} \frac{u^{k}}{k!} \frac{t^{n}}{n!}=e^{x u} A_{x, y}(t+y u)
$$

where

$$
A_{x, y}(t)=\sum_{n=0}^{\infty} a_{n}^{0} \frac{t^{n}}{n!}
$$

Proof. Using (13) we have

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty}\left(\sum_{i=0}^{k}\binom{k}{i} x^{k-i} y^{i} a_{n+i}^{0}\right) \frac{u^{k}}{k!} \frac{t^{n}}{n!}=\sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{x^{k-i} u^{k-i}}{(k-i)!} \sum_{n=0}^{\infty} a_{n+i}^{0} \frac{t^{n}}{n!} \frac{(y u)^{i}}{i!} .
$$

If we write RHS by means of Cauchy product we get:

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{n}^{k} \frac{u^{k}}{k!} \frac{t^{n}}{n!}=\sum_{k=0}^{\infty} \frac{(x u)^{k}}{k!} \sum_{n=0}^{\infty}\left(a_{n+k}^{0} \frac{t^{n}}{n!}\right) \frac{(y u)^{k}}{k!}
$$

We can equally well write the last sum in the form $A_{x, y}(t+y u)$, which completes the proof.
The following corollary also provides the connection between the exponential generating functions of the initial sequence and the first column entries.

Corollary 7. [1] The following relation holds:

$$
\begin{equation*}
\bar{A}_{x, y}(t)=e^{x t} A_{x, y}(y t) \tag{17}
\end{equation*}
$$

where

$$
\bar{A}_{x, y}(t)=\sum_{n=0}^{\infty} a_{0}^{n} \frac{t^{n}}{n!} \text { and } \quad A_{x, y}(t)=\sum_{n=0}^{\infty} a_{n}^{0} \frac{t^{n}}{n!}
$$

3 Applications of generalized Euler-Seidel matrix

In this section, we show that the generalized Euler-Seidel method is useful to obtain some properties of the generalized second order recurrence relation.

Proposition 8.

$$
\begin{equation*}
W_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i}(-q)^{k-i} p^{i} W_{n+i} . \tag{18}
\end{equation*}
$$

Proof. By setting $x=-q$ and $y=p$ in (12), we obtain

$$
\begin{equation*}
a_{n}^{k}=-q a_{n}^{k-1}+p a_{n+1}^{k-1} . \tag{19}
\end{equation*}
$$

For $a_{n}^{0}=W_{n}, n \geq 0$. We can write $a_{n}^{1}=W_{n+2}$. By induction on k and using equation (19), we obtain $a_{n}^{k}=W_{n+2 k}$. Now considering equation (13) for $x=-q$ and $y=p$, we have

$$
a_{n}^{k}=\sum_{i=0}^{k}\binom{k}{i}(-q)^{k-i} p^{i} a_{n+i}^{0} .
$$

Then we obtain

$$
W_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i}(-q)^{k-i} p^{i} W_{n+i} .
$$

This completes the proof.
Using (18), we get the following identities of the Fibonacci numbers F_{n}, Lucas numbers L_{n}, Pell numbers P_{n}, Pell-Lucas numbers Q_{n}, Jacobsthal numbers J_{n}, Jacobsthal-Lucas numbers j_{n}, Bronze Fibonacci numbers \mathcal{B}_{n}, Signed Fibonacci numbers \mathcal{F}_{n}, Signed Pell numbers \mathcal{P}_{n}, and also D_{n} and N_{n} numbers

$$
\begin{array}{ll}
F_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} F_{n+i}, & L_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} L_{n+i}, \\
P_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 2^{i} P_{n+i}, & Q_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 2^{i} Q_{n+i}, \\
J_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 2^{k-i} J_{n+i}, & j_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 2^{k-i} j_{n+i}, \\
\mathcal{B}_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 3^{i} \mathcal{B}_{n+i}, & \mathcal{F}_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} \mathcal{F}_{n+i}, \\
\mathcal{P}_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i}(-2)^{i} \mathcal{P}_{n+i}, & D_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 4^{i} D_{n+i}, \\
N_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} 2^{i} N_{n+i} . &
\end{array}
$$

Corollary 9.

$$
\begin{align*}
W_{2 n} & =\sum_{i=0}^{n}\binom{n}{i}(-q)^{n-i} p^{i} W_{i} \tag{20}\\
W_{n} & =\frac{1}{p^{n}} \sum_{i=0}^{n}\binom{n}{i}(q)^{n-i} W_{2 i} \tag{21}
\end{align*}
$$

and

$$
\begin{gather*}
W_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i}(-q)^{n-i} p^{i} W_{i+1}, \tag{22}\\
W_{n}=\frac{1}{p^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(q)^{n-i} W_{2 i-1} . \tag{23}
\end{gather*}
$$

From (20), we obtain some formulas for these well-known sequences by the new method.

$$
\begin{array}{ll}
F_{2 n}=\sum_{i=0}^{n}\binom{n}{i} F_{i}, & L_{2 n}=\sum_{i=0}^{n}\binom{n}{i} L_{i}, \\
P_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 2^{i} P_{i}, & Q_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 2^{i} Q_{i}, \\
J_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} J_{i}, & j_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} j_{i}, \\
\mathcal{B}_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 3^{i} \mathcal{B}_{i}, & \mathcal{F}_{2 n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \mathcal{F}_{i}, \\
\mathcal{P}_{2 n}=\sum_{i=0}^{n}\binom{n}{i}(-2)^{i} \mathcal{P}_{i}, & D_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 4^{i} D_{i}, \\
N_{2 n}=\sum_{i=0}^{n}\binom{n}{i} 2^{i} N_{i} . &
\end{array}
$$

Here with help of equation (21), we have following identities:

$$
\begin{array}{ll}
F_{n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} F_{2 i}, & L_{n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} L_{2 i}, \\
P_{n}=\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} P_{2 i}, & Q_{n}=\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} Q_{2 i}, \\
J_{n}=\sum_{i=0}^{n}\binom{n}{i}(-2)^{n-i} J_{2 i}, & j_{n}=\sum_{i=0}^{n}\binom{n}{i}(-2)^{n-i} j_{2 i}, \\
\mathcal{B}_{n}=\frac{1}{3^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} \mathcal{B}_{2 i}, & \mathcal{F}_{n}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \mathcal{F}_{2 i}, \\
\mathcal{P}_{n}=\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \mathcal{P}_{2 i}, & D_{n}=\frac{1}{4^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} D_{2 i}, \\
N_{n}=\frac{1}{2^{n}} \sum_{i=0}^{n}\binom{n}{i}(-1)^{n-i} N_{2 i} . &
\end{array}
$$

We show from (22)

$$
\begin{array}{ll}
F_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} F_{i+1}, & L_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} L_{i+1}, \\
P_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 2^{i} P_{i+1}, & Q_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 2^{i} Q_{i+1}, \\
J_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} J_{i+1}, & j_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 2^{n-i} j_{i+1}, \\
\mathcal{B}_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 3^{i} \mathcal{B}_{i+1}, & \mathcal{F}_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} \mathcal{F}_{i+1}, \\
\mathcal{P}_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i}(-2)^{i} \mathcal{P}_{i+1}, & D_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 4^{i} D_{i+1}, \\
N_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} 2^{i} N_{i+1} . &
\end{array}
$$

The similar results obtained from equation (23):

$$
\begin{array}{ll}
F_{n}=\sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} F_{2 i-1}, & L_{n}=\sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} L_{2 i-1}, \\
P_{n}=\frac{1}{2^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} P_{2 i-1}, & Q_{n}=\frac{1}{2^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} Q_{2 i-1}, \\
J_{n}=\sum_{i=1}^{n}\binom{n-1}{i-1}(-2)^{n-i} J_{2 i-1}, & j_{n}=\sum_{i=1}^{n}\binom{n-1}{i-1}(-2)^{n-i} j_{2 i-1}, \\
\mathcal{B}_{n}=\frac{1}{3^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} \mathcal{B}_{2 i-1}, & \mathcal{F}_{n}=\sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{1-i} \mathcal{F}_{2 i-1}, \\
\mathcal{P}_{n}=\frac{1}{2^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{1-i} \mathcal{P}_{2 i-1}, & D_{n}=\frac{1}{4^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} D_{2 i-1}, \\
N_{n}=\frac{1}{2^{n-1}} \sum_{i=1}^{n}\binom{n-1}{i-1}(-1)^{n-i} N_{2 i-1} . &
\end{array}
$$

4 Some results on generating functions

4.1 Results on ordinary generating functions

Proposition 10. Generating function of the even W_{n} numbers is

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{2 n} t^{n}=\frac{a(1+q t)+(b-p a) p t}{(1+q t)^{2}-p^{2} t} \tag{24}
\end{equation*}
$$

Proof. Firstly we realize that by setting $a_{n}^{0}=W_{n}$ in $G E S$ we get $a_{0}^{n}=W_{2 n}$ (see Eq. (19). Here by considering (16) we have

$$
\overline{a_{-q, p}}(t)=\sum_{n=0}^{\infty} W_{2 n} t^{n}=\frac{1}{1+q t} a_{-q, p}\left(\frac{p t}{1+q t}\right) .
$$

Also we know from equation (10)

$$
a_{-q, p}(t)=\sum_{n=0}^{\infty} W_{n} t^{n}=\frac{a+(b-p a) t}{1-p t+q t^{2}}
$$

which completes the proof.
Using (24), we obtain the generating functions of the Fibonacci numbers F_{n}, Lucas numbers L_{n}, Pell numbers P_{n}, Pell-Lucas numbers Q_{n}, Jacobsthal numbers J_{n}, Jacobsthal-Lucas numbers j_{n}, Bronze Fibonacci numbers \mathcal{B}_{n}, Signed Fibonacci numbers \mathcal{F}_{n}, Signed Pell numbers \mathcal{P}_{n}, and also D_{n} and N_{n} numbers, respectively.

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} F_{2 n} t^{n}=\frac{t}{1-3 t+t^{2}}, & \sum_{n=0}^{\infty} L_{2 n} t^{n}=\frac{2-3 t}{1-3 t+t^{2}}, \\
\sum_{n=0}^{\infty} P_{2 n} t^{n}=\frac{2 t}{1-6 t+t^{2}}, & \sum_{n=0}^{\infty} Q_{2 n} t^{n}=\frac{2-6 t}{1-6 t+t^{2}},
\end{array}
$$

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} J_{2 n} t^{n}=\frac{t}{1-5 t+4 t^{2}}, & \sum_{n=0}^{\infty} j_{2 n} t^{n}=\frac{2-5 t}{1-5 t+4 t^{2}} \\
\sum_{n=0}^{\infty} \mathcal{B}_{2 n} t^{n}=\frac{3 t}{1-11 t+t^{2}}, & \sum_{n=0}^{\infty} \mathcal{F}_{2 n} t^{n}=\frac{1-3 t}{1-3 t+t^{2}} \\
\sum_{n=0}^{\infty} \mathcal{P}_{2 n} t^{n}=\frac{-2 t}{1-6 t+t^{2}}, & \sum_{n=0}^{\infty} D_{2 n} t^{n}=\frac{4 t}{1-18 t+t^{2}}, \\
\sum_{n=0}^{\infty} N_{2 n} t^{n}=\frac{1-3 t}{1-6 t+t^{2}} . &
\end{array}
$$

Proposition 11. Generating function of the odd W_{n} numbers is

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{2 n+1} t^{n}=\frac{(b-p a)(1+q t)+a p}{(1+q t)^{2}-p^{2} t} \tag{25}
\end{equation*}
$$

Proof. In view of the recurrence (8) we have,

$$
\sum_{n=0}^{\infty} W_{2 n+1} t^{n}=\frac{1}{p}\left[\sum_{n=0}^{\infty} W_{2 n+2} t^{n}+q \sum_{n=0}^{\infty} W_{2 n} t^{n}\right]
$$

Employing (24) on the right in the above equation we obtain (25).
From (25), we get the generating functions for odd indexed of these well-known sequences.

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} F_{2 n+1} t^{n}=\frac{1-t}{1-3 t+t^{2}}, & \sum_{n=0}^{\infty} L_{2 n+1} t^{n}=\frac{1+t}{1-3 t+t^{2}}, \\
\sum_{n=0}^{\infty} P_{2 n+1} t^{n}=\frac{1-t}{1-6 t+t^{2}}, & \sum_{n=0}^{\infty} Q_{2 n+1} t^{n}=\frac{2+2 t}{1-6 t+t^{2}}, \\
\sum_{n=0}^{\infty} J_{2 n+1} t^{n}=\frac{1-2 t}{1-5 t+4 t^{2}}, & \sum_{n=0}^{\infty} j_{2 n+1} t^{n}=\frac{1+2 t}{1-5 t+4 t^{2}}, \\
\sum_{n=0}^{\infty} \mathcal{B}_{2 n+1} t^{n}=\frac{1-t}{1-11 t+t^{2}}, & \sum_{n=0}^{\infty} \mathcal{F}_{2 n+1} t^{n}=\frac{1-2 t}{1-3 t+t^{2}}, \\
\sum_{n=0}^{\infty} \mathcal{P}_{2 n+1} t^{n}=\frac{1-t}{1-6 t+t^{2}}, & \sum_{n=0}^{\infty} D_{2 n+1} t^{n}=\frac{1-t}{1-18 t+t^{2}}, \\
\sum_{n=0}^{\infty} N_{2 n+1} t^{n}=\frac{1+t}{1-6 t+t^{2}} . &
\end{array}
$$

4.2 Results on exponential generating functions

Proposition 12. Exponential generating function of the $W_{2 n}$ numbers is

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{2 n} \frac{t^{n}}{n!}=A e^{(\alpha p-q) t}+B e^{(\beta p-q) t} \tag{26}
\end{equation*}
$$

Proof. For $a_{n}^{0}=W_{n}$ in $G E S$ we get $a_{0}^{n}=W_{2 n}$ (see Eq. (19)). Using equation (11) we get

$$
\bar{A}_{-q, p}(t)=\sum_{n=0}^{\infty} W_{2 n} \frac{t^{n}}{n!}=e^{-q t}\left(A e^{\alpha p t}+B e^{\beta p t}\right)
$$

which completes the proof.

From (26)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} F_{2 n} \frac{t^{n}}{n!}=\frac{e^{\left(\frac{3+\sqrt{5}}{2}\right) t}-e^{\left(\frac{3-\sqrt{5}}{2}\right) t}}{\sqrt{5}}, \\
& \sum_{n=0}^{\infty} L_{2 n} \frac{t^{n}}{n!}=e^{\left(\frac{3+\sqrt{5}}{2}\right) t}+e^{\left(\frac{3-\sqrt{5}}{2}\right) t}, \\
& \sum_{n=0}^{\infty} P_{2 n} \frac{t^{n}}{n!}=\frac{e^{(3+2 \sqrt{2}) t}-e^{(3-2 \sqrt{2}) t}}{2 \sqrt{2}}, \\
& \sum_{n=0}^{\infty} Q_{2 n} \frac{t^{n}}{n!}=e^{(3+2 \sqrt{2}) t}+e^{(3-2 \sqrt{2}) t}, \\
& \sum_{n=0}^{\infty} J_{2 n} \frac{t^{n}}{n!}=\frac{e^{4 t}-e^{t}}{3}, \\
& \sum_{n=0}^{\infty} j_{2 n} \frac{t^{n}}{n!}=e^{4 t}+e^{t}, \\
& \sum_{n=0}^{\infty} \mathcal{B}_{2 n} \frac{t^{n}}{n!}=\frac{e^{\left(\frac{11+3 \sqrt{13}}{2}\right) t}-e^{\left(\frac{11-3 \sqrt{13}}{2}\right) t}}{\sqrt{13}}, \\
& \left.\sum_{n=0}^{\infty} \mathcal{F}_{2 n} \frac{t^{n}}{n!}=\frac{(\sqrt{5}+3) e^{\left(\frac{3-\sqrt{5}}{2}\right) t}+(\sqrt{5}-3) e}{2 \sqrt{5}}, \frac{3+\sqrt{5}}{2}\right) t \\
& \sum_{n=0}^{\infty} \mathcal{P}_{2 n} \frac{t^{n}}{n!}=\frac{e^{(3-2 \sqrt{2}) t}-e^{(3+2 \sqrt{2}) t}}{2 \sqrt{2}}, \\
& \sum_{n=0}^{\infty} D_{2 n} \frac{t^{n}}{n!}=\frac{e^{(9+4 \sqrt{5}) t}-e^{(9-4 \sqrt{5}) t}}{2 \sqrt{5}}, \\
& \sum_{n=0}^{\infty} N_{2 n} \frac{t^{n}}{n!}=\frac{e^{(3-2 \sqrt{2}) t}+e^{(3+2 \sqrt{2}) t}}{2} .
\end{aligned}
$$

Proposition 13. Exponential generating function of the $W_{2 n+1}$ numbers is

$$
\begin{equation*}
\sum_{n=0}^{\infty} W_{2 n+1} \frac{t^{n}}{n!}=A\left(p-\frac{q}{\alpha}\right) e^{(\alpha p-q) t}+B\left(p-\frac{q}{\beta}\right) e^{(\beta p-q) t} . \tag{27}
\end{equation*}
$$

Remark 14. For the sake of simplicity we use the following representation in the proof:

$$
W_{e}(t)=\sum_{n=0}^{\infty} W_{2 n} \frac{t^{n}}{n!} \text { and } W_{o}(t)=\sum_{n=0}^{\infty} W_{2 n+1} \frac{t^{n}}{n!}
$$

Proof. From equation (8) we have

$$
W_{o}(t)-b=p W_{e}(t)-p a-q \int W_{o}(t) d t .
$$

This, combined with (26) to gives

$$
\frac{d}{d t} W_{o}(t)+q W_{o}(t)=p \frac{d}{d t}\left\{A e^{(\alpha p-q) t}+B e^{(\beta p-q) t}\right\}
$$

Hence we have the following differential equation:

$$
W_{o}^{\prime}(t)+q W_{o}(t)=A p(\alpha p-q) e^{(\alpha p-q) t}+B p(\beta p-q) e^{(\beta p-q) t} .
$$

The solution of this linear differential equation is:

$$
W_{o}(t)=A\left(p-\frac{q}{\alpha}\right) e^{(\alpha p-q) t}+B\left(p-\frac{q}{\beta}\right) e^{(\beta p-q) t}+K e^{-q t}
$$

Considering $W_{o}(0)=b$ we calculate the constant K as

$$
K=b-A\left(p-\frac{q}{\alpha}\right)-B\left(p-\frac{q}{\beta}\right)=0 .
$$

Combining these results and after some rearrangement we complete the proof.
Using (26)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} F_{2 n+1} \frac{t^{n}}{n!}=\frac{(1+\sqrt{5}) e^{\left(\frac{3+\sqrt{5}}{2}\right) t}-(1-\sqrt{5}) e^{\left(\frac{3-\sqrt{5}}{2}\right) t}}{2 \sqrt{5}}, \\
& \sum_{n=0}^{\infty} L_{2 n+1} \frac{t^{n}}{n!}=\frac{(1+\sqrt{5}) e^{\left(\frac{3+\sqrt{5}}{2}\right) t}+(1-\sqrt{5}) e^{\left(\frac{3-\sqrt{5}}{2}\right) t}}{2}, \\
& \sum_{n=0}^{\infty} P_{2 n+1} \frac{t^{n}}{n!}=\frac{(1+\sqrt{2}) e^{(3+2 \sqrt{2}) t}-(1-\sqrt{2}) e^{(3-2 \sqrt{2}) t}}{2 \sqrt{2}}, \\
& \sum_{n=0}^{\infty} Q_{2 n+1} \frac{t^{n}}{n!}=(1+\sqrt{2}) e^{(3+2 \sqrt{2}) t}+(1-\sqrt{2}) e^{(3-2 \sqrt{2}) t}, \\
& \sum_{n=0}^{\infty} J_{2 n+1} \frac{t^{n}}{n!}=\frac{2 e^{4 t}+e^{t}}{3}, \\
& \sum_{n=0}^{\infty} j_{2 n+1} \frac{t^{n}}{n!}=2 e^{4 t}-e^{t}, \\
& \sum_{n=0}^{\infty} \mathcal{B}_{2 n+1} \frac{t^{n}}{n!}=\frac{(3+\sqrt{13}) e^{\left(\frac{11+3 \sqrt{13}}{2}\right) t}-(3-\sqrt{13}) e^{\left(\frac{11-3 \sqrt{13}}{2}\right) t}}{2 \sqrt{13}}, \\
& \sum_{n=0}^{\infty} \mathcal{F}_{2 n+1} \frac{t^{n}}{n!}=\frac{(\sqrt{5}+1) e^{\left(\frac{3-\sqrt{5}}{2}\right) t}+(\sqrt{5}-1) e^{\left(\frac{3+\sqrt{5}}{2}\right) t}}{2 \sqrt{5}}, \\
& \sum_{n=0}^{\infty} \mathcal{P}_{2 n+1} \frac{t^{n}}{n!}=\frac{(\sqrt{2}-1) e^{(3-2 \sqrt{2}) t}-(\sqrt{2}+1) e^{(3+2 \sqrt{2}) t}}{2 \sqrt{2}}, \\
& \sum_{n=0}^{\infty} D_{2 n+1} \frac{t^{n}}{n!}=\frac{(2+\sqrt{5}) e^{(9+4 \sqrt{5}) t}-(2-\sqrt{5}) e^{(9-4 \sqrt{5}) t}}{2 \sqrt{5}}, \\
& \sum_{n=0}^{\infty} N_{2 n+1} \frac{t^{n}}{n!}=\frac{(1+\sqrt{2}) e^{(3+2 \sqrt{2}) t}+(1-\sqrt{2}) e^{(3-2 \sqrt{2}) t}}{2} .
\end{aligned}
$$

References

[1] Chen, K.-W., Identities From the Binomial Transform, J. Number Theory, Vol. 124, 2007, No. 1, 142-150.
[2] Dumont, D., Matrices d'Euler-Seidel, Seminaire Lotharingien de Combinatorie, 1981,B05c.
[3] Dil, A., I. Mező, Symmetric Algorithm for Hyperharmonic and Fibonacci Numbers, Appl. Math. Comput., Vol. 206, 2008, 942-951.
[4] Euler, L., De Transformatione Serierum, Opera Omnia, series prima, Vol. X, Teubner, 1913.
[5] Horadam, A. F., Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quart., Vol. 3, 1965, No. 3, 161-176.
[6] Horadam, A. F., Pell Identities, Fibonacci Quart., Vol. 9, 1971, No. 3, 245-263.
[7] Mező, I., A. Dil, Euler-Seidel Method for Certain Combinatorial Numbers and A New Characterization of Fibonacci Sequence, Cent. Eur. J. Math., Vol. 7, 2009, No. 2, 310-321.
[8] Mező, I., Several Generating Functions for Second-Order Recurrence Sequences, J. Integer Seq. Vol. 12, 2009, Article 09.3.7.
[9] Seidel, L., Über Eine Einfache Enstehung Weise der Bernoullischen Zahlen und Einiger Verwandten Reihen, Sitzungsberichte der Münch. Akad. Math. Phys. Classe ,1877, 157-187.

