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1 Introduction

Let (an) be a sequence. In [2], the Euler–Seidel matrix associated with this sequence is deter-
mined recursively by the formula

a0n = an (n ≥ 0)

akn = ak−1n + ak−1n+1 (n ≥ 0, k ≥ 1) . (1)

From relation (1), it can be seen that the first row and the first column can be transformed into
each other via the well known binomial inverse pair as,

an0 =
n∑
k=0

(
n

k

)
a0k, (2)
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a0n =
n∑
k=0

(
n

k

)
(−1)n−kak0. (3)

Also any entry akn can be written in terms of the initial sequence as:

akn =
k∑
i=0

(
k

i

)
a0n+i. (4)

Proposition 1. (Euler) [4] Let

a(t) =
∞∑
n=0

a0nt
n

be the generating function of the initial sequence (a0n). Then the generating function of the se-
quence (an0 ) is

a(t) =
∞∑
n=0

an0 t
n =

1

1− t
a

(
t

1− t

)
. (5)

Proposition 2. (Seidel) [9] Let

A(t) =
∞∑
n=0

a0n
tn

n!

be the exponential generating function of the initial sequence (a0n). Then the exponential gener-
ating function of the sequence (an0 ) is

A(t) =
∞∑
n=0

an0
tn

n!
= etA(t). (6)

In fact, it is possible to state a more general result than (6). The following equation gives
relation between exponential generating function of columns (or rows) with the exponential gen-
erating function of the initial sequence (see [2]).

∞∑
n=0

∞∑
k=0

akn
uk

k!

tn

n!
= euA (t+ u) . (7)

In [7] there are applications of Euler–Seidel matrix for hyperharmonic and r−Stirling num-
bers. Also authors introduced ”symmetric infinite matrix” and give some applications in [3].

In [5] the generalized second order recurrence sequence {Wn (a, b; p, q)} is defined as
for n ≥ 0

Wn+2 = pWn+1 − qWn (8)

with initial conditions
W0 = a , W1 = b,

where p2 − 4q > 0. Let the roots of the equation t2 − pt + q = 0 be α =
p+
√
p2−4q
2

and

β =
p−
√
p2−4q
2

. Then Wn can be written in the form
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Wn = Aαn +Bβn, (9)

where A = b−aβ
α−β and B = aα−b

α−β . The following generating functions of {Wn} are given in [6, 8]
as:

∞∑
n=0

Wnt
n =

a+ (b− pa) t
1− pt+ qt2

(10)

and
∞∑
n=0

Wn
tn

n!
= Aeαt +Beβt. (11)

Mező gave the generating functions of the general second-order recurrence relations in [8].
Here, we get some relation and generating functions of the general second-order recurrence rela-
tions by using generalized Euler–Seidel matrices.

The special cases of {Wn (a, b; p, q)} give Fibonacci numbers Fn (Oeis A000045), Lucas
numbers Ln (Oeis A000032), Pell numbers (or Silver Fibonacci numbers) Pn (Oeis A000129),
Pell–Lucas numbers Qn (Oeis A002203), Jacobsthal numbers Jn (Oeis A001045), Jacobsthal–
Lucas numbers jn (Oeis A014551), Bronze Fibonacci numbers Bn (Oeis A006190), Signed
Fibonacci numbers Fn (Oeis A039834), Signed Pell numbers Pn (Oeis A215936 ).

Also we get the sequences; Dn: denominators of continued fraction convergents to
√
5

(Oeis A001076) and Nn: numerators of continued fraction convergents to
√
2 (Oeis A001333) as

follows:

Wn (0, 1; 1, −1) = Fn, Wn (2, 1; 1, −1) = Ln,

Wn (0, 1; 2, −1) = Pn, Wn (2, 2; 2, −1) = Qn,

Wn (0, 1; 1, −2) = Jn, Wn (2, 1; 1, −2) = jn,

Wn (0, 1; 3, −1) = Bn, Wn (1, 1; −1, −1) = Fn,
Wn (0, 1;−2, −1) = Pn, Wn (0, 1; 4, −1) = Dn,

Wn (1, 1; 2, −1) = Nn.

2 Generalized Euler–Seidel matrices
with two parameters

In this section, we consider the generalized Euler–Seidel matrix, which is given in [1] with pa-
rameters x, y. We obtain the connection between the generating functions of the initial sequence
and the first column entries of the generalized Euler–Seidel matrices.

Let us consider a given sequence (an)n≥0. Generalized Euler–Seidel matrix with parameters
x and y (see [1]) corresponding to this sequence is recursively defined by the formulae

a0n = an (n ≥ 0) (12)

akn (x, y) = xak−1n + yak−1n+1 (n ≥ 0, k ≥ 1 positive integers).

where akn represents the k-th row and n-th column entry and x and y are nonzero real parameters;
i.e;
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.

From now on for the sake of simplicity we represent akn (x, y) with akn.
The following proposition gives the relation between the any entry of the matrix and the initial

sequence.

Proposition 3. [1] We have

akn =
k∑
i=0

(
k

i

)
xk−iyia0n+i. (13)

Proof. By induction on n+ k.

The first row and column can be transformed into each other via the well known binomial
inverse pair as follows.

Corollary 4.

an0 = xn
n∑
i=0

(
n

i

)(y
x

)i
a0i (14)

and

a0n =
1

yn

n∑
i=0

(
n

i

)
(−x)n−i ai0. (15)

Generating Functions. We give connections between the generating functions of the initial
sequences and the first column entries.

Proposition 5. The recurrence (12) gives the following relation:

ax,y (t) =
1

1− xt
ax,y

(
yt

1− xt

)
(16)

where

ax,y (t) =
∞∑
n=0

an0 t
n and ax,y (t) =

∞∑
n=0

a0nt
n.

Proof. Considering (12) we write

ax,y (t) =
∞∑
n=0

(
n∑
r=0

(
n

r

)
xn−ryra0r

)
tn.
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By changing the order of the above sums and using Newton binomial sums formula we obtain

ax,y (t) =
∞∑
r=0

(y
x

)r
a0r

∞∑
n=0

(
n+ r

r

)
(xt)n+r

=
1

1− xt

∞∑
r=0

a0r

(
yt

1− xt

)r
.

This completes the proof.

Now we give the generalization of the equation (7).

Proposition 6. For the akn entries of the Generalized Euler–Seidel Matrices we have:

∞∑
n=0

∞∑
k=0

akn
uk

k!

tn

n!
= exuAx,y (t+ yu)

where

Ax,y (t) =
∞∑
n=0

a0n
tn

n!
.

Proof. Using (13) we have

∞∑
n=0

∞∑
k=0

(
k∑
i=0

(
k

i

)
xk−iyia0n+i

)
uk

k!

tn

n!
=
∞∑
k=0

k∑
i=0

xk−iuk−i

(k − i)!

∞∑
n=0

a0n+i
tn

n!

(yu)i

i!
.

If we write RHS by means of Cauchy product we get:

∞∑
n=0

∞∑
k=0

akn
uk

k!

tn

n!
=
∞∑
k=0

(xu)k

k!

∞∑
n=0

(
a0n+k

tn

n!

)
(yu)k

k!
.

We can equally well write the last sum in the form Ax,y (t+ yu), which completes the proof.

The following corollary also provides the connection between the exponential generating
functions of the initial sequence and the first column entries.

Corollary 7. [1] The following relation holds:

Ax,y (t) = extAx,y (yt) (17)

where

Ax,y (t) =
∞∑
n=0

an0
tn

n!
and Ax,y (t) =

∞∑
n=0

a0n
tn

n!
.

3 Applications of generalized Euler–Seidel matrix

In this section, we show that the generalized Euler–Seidel method is useful to obtain some prop-
erties of the generalized second order recurrence relation.
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Proposition 8.

Wn+2k =
k∑
i=0

(
k

i

)
(−q)k−i piWn+i. (18)

Proof. By setting x = −q and y = p in (12), we obtain

akn = −qak−1n + pak−1n+1. (19)

For a0n = Wn, n ≥ 0. We can write a1n = Wn+2. By induction on k and using equation (19), we
obtain akn = Wn+2k. Now considering equation (13) for x = −q and y = p, we have

akn =
k∑
i=0

(
k

i

)
(−q)k−i pia0n+i.

Then we obtain

Wn+2k =
k∑
i=0

(
k

i

)
(−q)k−i piWn+i.

This completes the proof.

Using (18), we get the following identities of the Fibonacci numbers Fn, Lucas numbers Ln,
Pell numbers Pn, Pell–Lucas numbersQn, Jacobsthal numbers Jn, Jacobsthal–Lucas numbers jn,
Bronze Fibonacci numbers Bn, Signed Fibonacci numbers Fn, Signed Pell numbers Pn, and also
Dn and Nn numbers

Fn+2k =
∑k

i=0

(
k
i

)
Fn+i, Ln+2k =

∑k
i=0

(
k
i

)
Ln+i,

Pn+2k =
∑k

i=0

(
k
i

)
2iPn+i, Qn+2k =

∑k
i=0

(
k
i

)
2iQn+i,

Jn+2k =
∑k

i=0

(
k
i

)
2k−iJn+i, jn+2k =

∑k
i=0

(
k
i

)
2k−ijn+i,

Bn+2k =
∑k

i=0

(
k
i

)
3iBn+i, Fn+2k =

∑k
i=0

(
k
i

)
(−1)iFn+i,

Pn+2k =
∑k

i=0

(
k
i

)
(−2)iPn+i, Dn+2k =

∑k
i=0

(
k
i

)
4iDn+i,

Nn+2k =
∑k

i=0

(
k
i

)
2iNn+i.

Corollary 9.

W2n =
n∑
i=0

(
n

i

)
(−q)n−i piWi, (20)

Wn =
1

pn

n∑
i=0

(
n

i

)
(q)n−iW2i (21)

and

W2n+1 =
n∑
i=0

(
n

i

)
(−q)n−i piWi+1, (22)

Wn =
1

pn−1

n∑
i=1

(
n− 1

i− 1

)
(q)n−iW2i−1. (23)
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From (20), we obtain some formulas for these well-known sequences by the new method.

F2n =
∑n

i=0

(
n
i

)
Fi, L2n =

∑n
i=0

(
n
i

)
Li,

P2n =
∑n

i=0

(
n
i

)
2iPi, Q2n =

∑n
i=0

(
n
i

)
2iQi,

J2n =
∑n

i=0

(
n
i

)
2n−iJi, j2n =

∑n
i=0

(
n
i

)
2n−iji,

B2n =
∑n

i=0

(
n
i

)
3iBi, F2n =

∑n
i=0

(
n
i

)
(−1)iFi,

P2n =
∑n

i=0

(
n
i

)
(−2)iPi, D2n =

∑n
i=0

(
n
i

)
4iDi,

N2n =
∑n

i=0

(
n
i

)
2iNi.

Here with help of equation (21), we have following identities:

Fn =
∑n

i=0

(
n
i

)
(−1)n−i F2i, Ln =

∑n
i=0

(
n
i

)
(−1)n−i L2i,

Pn = 1
2n

∑n
i=0

(
n
i

)
(−1)n−i P2i, Qn = 1

2n

∑n
i=0

(
n
i

)
(−1)n−iQ2i,

Jn =
∑n

i=0

(
n
i

)
(−2)n−i J2i, jn =

∑n
i=0

(
n
i

)
(−2)n−i j2i,

Bn = 1
3n

∑n
i=0

(
n
i

)
(−1)n−i B2i, Fn =

∑n
i=0

(
n
i

)
(−1)iF2i,

Pn = 1
2n

∑n
i=0

(
n
i

)
(−1)iP2i, Dn = 1

4n

∑n
i=0

(
n
i

)
(−1)n−iD2i,

Nn = 1
2n

∑n
i=0

(
n
i

)
(−1)n−iN2i.

We show from (22)

F2n+1 =
∑n

i=0

(
n
i

)
Fi+1, L2n+1 =

∑n
i=0

(
n
i

)
Li+1,

P2n+1 =
∑n

i=0

(
n
i

)
2iPi+1, Q2n+1 =

∑n
i=0

(
n
i

)
2iQi+1,

J2n+1 =
∑n

i=0

(
n
i

)
2n−iJi+1, j2n+1 =

∑n
i=0

(
n
i

)
2n−iji+1,

B2n+1 =
∑n

i=0

(
n
i

)
3iBi+1, F2n+1 =

∑n
i=0

(
n
i

)
(−1)iFi+1,

P2n+1 =
∑n

i=0

(
n
i

)
(−2)iPi+1, D2n+1 =

∑n
i=0

(
n
i

)
4iDi+1,

N2n+1 =
∑n

i=0

(
n
i

)
2iNi+1.
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The similar results obtained from equation (23):

Fn =
∑n

i=1

(
n−1
i−1

)
(−1)n−i F2i−1, Ln =

∑n
i=1

(
n−1
i−1

)
(−1)n−i L2i−1,

Pn = 1
2n−1

∑n
i=1

(
n−1
i−1

)
(−1)n−i P2i−1, Qn = 1

2n−1

∑n
i=1

(
n−1
i−1

)
(−1)n−iQ2i−1,

Jn =
∑n

i=1

(
n−1
i−1

)
(−2)n−i J2i−1, jn =

∑n
i=1

(
n−1
i−1

)
(−2)n−i j2i−1,

Bn = 1
3n−1

∑n
i=1

(
n−1
i−1

)
(−1)n−i B2i−1, Fn =

∑n
i=1

(
n−1
i−1

)
(−1)1−iF2i−1,

Pn = 1
2n−1

∑n
i=1

(
n−1
i−1

)
(−1)1−iP2i−1, Dn = 1

4n−1

∑n
i=1

(
n−1
i−1

)
(−1)n−iD2i−1,

Nn = 1
2n−1

∑n
i=1

(
n−1
i−1

)
(−1)n−iN2i−1.

4 Some results on generating functions

4.1 Results on ordinary generating functions

Proposition 10. Generating function of the even Wn numbers is

∞∑
n=0

W2nt
n =

a (1 + qt) + (b− pa) pt
(1 + qt)2 − p2t

. (24)

Proof. Firstly we realize that by setting a0n = Wn in GES we get an0 = W2n (see Eq. (19). Here
by considering (16) we have

a−q, p (t) =
∞∑
n=0

W2nt
n =

1

1 + qt
a−q, p

(
pt

1 + qt

)
.

Also we know from equation (10)

a−q, p (t) =
∞∑
n=0

Wnt
n =

a+ (b− pa) t
1− pt+ qt2

which completes the proof.

Using (24), we obtain the generating functions of the Fibonacci numbers Fn, Lucas numbers
Ln, Pell numbers Pn, Pell–Lucas numbersQn, Jacobsthal numbers Jn, Jacobsthal–Lucas numbers
jn, Bronze Fibonacci numbers Bn, Signed Fibonacci numbers Fn, Signed Pell numbers Pn, and
also Dn and Nn numbers, respectively.∑∞

n=0 F2nt
n = t

1−3t+t2 ,
∑∞

n=0 L2nt
n = 2−3t

1−3t+t2 ,∑∞
n=0 P2nt

n = 2t
1−6t+t2 ,

∑∞
n=0Q2nt

n = 2−6t
1−6t+t2 ,
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∑∞
n=0 J2nt

n = t
1−5t+4t2

,
∑∞

n=0 j2nt
n = 2−5t

1−5t+4t2
,

∑∞
n=0 B2ntn = 3t

1−11t+t2 ,
∑∞

n=0F2nt
n = 1−3t

1−3t+t2 ,∑∞
n=0P2nt

n = −2t
1−6t+t2 ,

∑∞
n=0D2nt

n = 4t
1−18t+t2 ,∑∞

n=0N2nt
n = 1−3t

1−6t+t2 .

Proposition 11. Generating function of the odd Wn numbers is

∞∑
n=0

W2n+1t
n =

(b− pa) (1 + qt) + ap

(1 + qt)2 − p2t
. (25)

Proof. In view of the recurrence (8) we have,

∞∑
n=0

W2n+1t
n =

1

p

[
∞∑
n=0

W2n+2t
n + q

∞∑
n=0

W2nt
n

]
.

Employing (24) on the right in the above equation we obtain (25) .

From (25), we get the generating functions for odd indexed of these well-known sequences.∑∞
n=0 F2n+1t

n = 1−t
1−3t+t2 ,

∑∞
n=0 L2n+1t

n = 1+t
1−3t+t2 ,∑∞

n=0 P2n+1t
n = 1−t

1−6t+t2 ,
∑∞

n=0Q2n+1t
n = 2+2t

1−6t+t2 ,∑∞
n=0 J2n+1t

n = 1−2t
1−5t+4t2

,
∑∞

n=0 j2n+1t
n = 1+2t

1−5t+4t2
,

∑∞
n=0 B2n+1t

n = 1−t
1−11t+t2 ,

∑∞
n=0F2n+1t

n = 1−2t
1−3t+t2 ,∑∞

n=0P2n+1t
n = 1−t

1−6t+t2 ,
∑∞

n=0D2n+1t
n = 1−t

1−18t+t2 ,∑∞
n=0N2n+1t

n = 1+t
1−6t+t2 .

4.2 Results on exponential generating functions

Proposition 12. Exponential generating function of the W2n numbers is

∞∑
n=0

W2n
tn

n!
= Ae(αp−q)t +Be(βp−q)t. (26)

Proof. For a0n = Wn in GES we get an0 = W2n (see Eq. (19)). Using equation (11) we get

A−q,p (t) =
∞∑
n=0

W2n
tn

n!
= e−qt

(
Aeαpt +Beβpt

)
,

which completes the proof.
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From (26)

∑∞
n=0 F2n

tn

n!
= e

(
3+
√
5

2

)
t
−e

(
3−
√
5

2

)
t

√
5

,

∑∞
n=0 L2n

tn

n!
= e

(
3+
√

5
2

)
t
+ e

(
3−
√
5

2

)
t
,

∑∞
n=0 P2n

tn

n!
= e(3+2

√
2)t−e(3−2

√
2)t

2
√
2

,

∑∞
n=0Q2n

tn

n!
= e(3+2

√
2)t + e(3−2

√
2)t,

∑∞
n=0 J2n

tn

n!
= e4t−et

3
,

∑∞
n=0 j2n

tn

n!
= e4t + et,

∑∞
n=0 B2n

tn

n!
= e

(
11+3

√
13

2

)
t
−e

(
11−3

√
13

2

)
t

√
13

,

∑∞
n=0F2n

tn

n!
=

(
√
5+3)e

(
3−
√
5

2

)
t
+(
√
5−3)e

(
3+
√
5

2

)
t

2
√
5

,

∑∞
n=0P2n

tn

n!
= e(3−2

√
2)t−e

(3+2
√
2)t

2
√
2

,

∑∞
n=0D2n

tn

n!
= e(9+4

√
5)t−e(9−4

√
5)t

2
√
5

,

∑∞
n=0N2n

tn

n!
= e(3−2

√
2)t+e

(3+2
√
2)t

2
.

Proposition 13. Exponential generating function of the W2n+1 numbers is

∞∑
n=0

W2n+1
tn

n!
= A

(
p− q

α

)
e(αp−q)t +B

(
p− q

β

)
e(βp−q)t. (27)

Remark 14. For the sake of simplicity we use the following representation in the proof:

We (t) =
∞∑
n=0

W2n
tn

n!
and Wo (t) =

∞∑
n=0

W2n+1
tn

n!
.

Proof. From equation (8) we have

Wo (t)− b = pWe (t)− pa− q
∫
Wo (t) dt.

This, combined with (26) to gives

d

dt
Wo (t) + qWo (t) = p

d

dt

{
Ae(αp−q)t +Be(βp−q)t

}
.
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Hence we have the following differential equation:

W ′
o (t) + qWo (t) = Ap (αp− q) e(αp−q)t +Bp (βp− q) e(βp−q)t.

The solution of this linear differential equation is:

Wo (t) = A
(
p− q

α

)
e(αp−q)t +B

(
p− q

β

)
e(βp−q)t +Ke−qt.

Considering Wo (0) = b we calculate the constant K as

K = b− A
(
p− q

α

)
−B

(
p− q

β

)
= 0.

Combining these results and after some rearrangement we complete the proof.

Using (26)

∑∞
n=0 F2n+1

tn

n!
=

(1+
√
5)e

(
3+
√
5

2

)
t
−(1−

√
5)e

(
3−
√
5

2

)
t

2
√
5

,

∑∞
n=0 L2n+1

tn

n!
=

(1+
√
5)e

(
3+
√
5

2

)
t
+(1−

√
5)e

(
3−
√
5

2

)
t

2
,

∑∞
n=0 P2n+1

tn

n!
=

(1+
√
2)e(3+2

√
2)t−(1−

√
2)e(3−2

√
2)t

2
√
2

,

∑∞
n=0Q2n+1

tn

n!
=
(
1 +
√
2
)
e(3+2

√
2)t +

(
1−
√
2
)
e(3−2

√
2)t,

∑∞
n=0 J2n+1

tn

n!
= 2e4t+et

3
,

∑∞
n=0 j2n+1

tn

n!
= 2e4t − et ,

∑∞
n=0 B2n+1

tn

n!
=

(3+
√
13)e

(
11+3

√
13

2

)
t
−(3−

√
13)e

(
11−3

√
13

2

)
t

2
√
13

,

∑∞
n=0F2n+1

tn

n!
=

(
√
5+1)e

(
3−
√
5

2

)
t
+(
√
5−1)e

(
3+
√
5

2

)
t

2
√
5

,

∑∞
n=0P2n+1

tn

n!
=

(
√
2−1)e(3−2

√
2)t−(

√
2+1)e

(3+2
√
2)t

2
√
2

,

∑∞
n=0D2n+1

tn

n!
=

(2+
√
5)e(9+4

√
5)t−(2−

√
5)e(9−4

√
5)t

2
√
5

,∑∞
n=0N2n+1

tn

n!
=

(1+
√
2)e(3+2

√
2)t+(1−

√
2)e

(3−2
√
2)t

2
.
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