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1 Introduction

The study of the classical means such as Logarithmic mean, Identric mean, Arithmetic mean,
Geometric mean and Seiffert mean has been topic of the intensive research in past few decades.
For the inequalities and the applications of these means we refer to reader to see [2–4,6,7,12,13,
17, 18] and the references therein.

Recently, Sándor [11] discovered two means X and Y , defined as

X = X(a, b) = AeG/P−1, Y = Y (a, b) = AeL/A−1,

for two distinct real numbers a and b, where

A = (a, b) = (a+ b)/2, G = G(a, b) =
√
ab
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L = L(a, b) =
a− b

log(a)− log(y)
, a 6= b,

P = P (a, b) =
a− b

2 arcsin
(
a−b
a+b

) , a 6= b,

are Arithmetic, Geometric, Logarithmic and Seiffert [19] means. The Harmonic and Identric
means of two real numbers a and b are respectively defined as

H = H(a, b) =
ab

a+ b
, I = I(a, b) =

1

e

(
aa

bb

)1/(a−b)

.

For the properties of X and Y means, and their relations with other means such as A,G, I, L, we
refer to reader to see [11].

One of the main results of the paper reads as follows:

Theorem A. For a > b > 0, we have

(1)
1

e
(G+H) < Y <

1

2
(G+H),

(2) G2I < IY < IG < L2,

(3)
G− Y
A− L

<
Y +G

2A
<

3G+H

4A
< 1,

(4) L <
2G+ A

3
< X < L(X,A) < P <

2A+G

3
< I,

(5) 2

(
1− A

P

)
< log

(
X

A

)
<

(
P

A

)2

.

The binomial coefficient
(
2n
n

)
will be denoted for simplicity by (2n, n).

Theorem B. One has the representations

(1) log

(
X

A

)
= −G

A

∞∑
n=0

ant
n,

where

an =
2n

4n(2n+ 1)
, (2n, n) =

(2n)!

(n!)2
, t =

(
b− a
b+ a

)2

,

(2) log

(
Y

G

)
=
∞∑
n=1

bnt
n,

where

b1 = −
1

3
, b2 = −

4

45
, · · · , bn = −

(
1

2n+ 1
+ b1/(2n−1) + b2/(2n−3) + · · ·+ b(n−1)/3

)
.
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2 Preliminaries

We give the following lemmas, which will be used in the proofs of our mains results.

Lemma 1. For x > 1, we have

(1) log(x) <

√
9x2 − 1

6x
− 1,

(2) log

(
2(3x− 1)

3x+ 1

)
<

log(x)

1 + log(x)
.

Proof. Let

f(x) = 1 + log x−
√

9x2 − 1

6x
,

for x > 1. One has

xf ′(x) = 1− 1 + 9x2

2
√

6x(9x2 − 1)
=

= − P (x)

2
√

6x(9x2 − 1)(1 + 9x2 + 2
√

6x(9x2 − 1))
,

where
P (x) = 81x4 − 216x3 + 18x2 + 24x+ 1.

Again, we have

P ′(x) = 324x3 − 648x2 + 36x+ 24, P ′′(x) = 972x2 − 1296x+ 36.

Since 81x4 − 216x3 = x3(81x − 216) > 0 for x ≥ 3, we get P (x) > 0 for x ≥ 3, so f ′(x) < 0

for x ≥ 3. Thus f(x) < f(3) < 0. Therefore, we have to consider x in (1, 3). The equation
P ′′(x) = 0 has a root x1 = 1.3 in (1, 2), and from the graph of the parabola it follows that
P ′′(x) < 0 for x ∈ (1, x1) and P ′′(x) > 0 for x ∈ (x1, 3). By P ′(1) < 0 and P ′(2) > 0 it follows
that P ′(x) = 0 has a root x2 in (1, 2). Since P ′(x) is strictly decreasing in (1, x1), the root x2 is
in fact in P ′(x1), 2). Since P ′(x) is strictly increasing in (x1, 2), the root x2 is unique. Therefore,
we get that P ′(x) < 0 for x in (1, x2) and P ′(x) > 0 in (x2, 3). This implies that P (x) has a
unique root x3 in (x2, 3).

Now the following can be written: For x ∈ (1, x2) one has P (x) < P (1) < 0 (as P (x)
is strictly decreasing here). For x ∈ (x2, x3) one has P (x) < P (x3) = 0 (as P (x) is strictly
increasing here). For x ∈ (x3, 3) one has P (x) > P (x3) = 0 (as P (x) is strictly increasing
here). The above imply that P (x) < 0 for x ∈ (1, x3) and P (x) > 0 for x ∈ (x3, 3). Therefore,
f ′(x) > 0 in the first interval, while it is < 0 in the second one. In other words, the point x3
is a maximum point of f(x) in the interval (1, 3). This means that f(x) ≤ f(x3). An easy
computation shows that x3 is approximately 2.6. Since f(2.6) < 0, the inequality is verified in
all cases.

For the proof of part (2), write

g(x) = log

(
2(3x− 1)

3x+ 1

)
− log(x)

1 + log(x)
,
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for x > 1. We get

g′(x) =
6

9x2 − 1
− 1

x(1 + log(x))2
,

which is negative by part (1), and g(1) = 0. This implies the proof of part (2).

Lemma 2. For x > 0, the following inequalities hold true

(1) 1 + log

(
1 + 2 cosh(x)

3

)
<

x

tanh(x)
< log(1 + 2 cosh(x)),

(2)
tanh(x)

x
< 1− log

(
2 cosh(x)

1 + cosh(x)

)
.

Proof. For x > 0, let

m(x) = 1 + log

(
1 + 2 cosh(x)

3

)
− x

tanh(x)
.

Differentiating m with respect to x, and applying the inequality

cosh(x)1/3 <
sinh(x)

x
, x > 0,

we get

m′(x) =
x

sinh(x)2
+

cosh(x)

sinh(x)
+

2 + sinh(x)

1 + 2 cosh(x)

=
x++2x cosh(x)− (2 + cosh(x)) sinh(x)

sinh(x)2(1 + 2 cosh(x))

=
x(2 + cosh(x))

sinh(x)2(1 + 2 cosh(x))

(
1 + 2 cosh(x)

2 + cosh(x)
− sinh(x)

x

)
<

x(2 + cosh(x))

sinh(x)2(1 + 2 cosh(x))

(
1 + 2 cosh(x)

2 + cosh(x)
− cosh(x)1/3

)
< 0,

the last inequality follows because the function

m1(z) = log

(
1 + 2z

2 + z

)
, z > 1

has derivative

m′1(z) = −
2(z − 1)2

3z(2 + z)(1 + 2z)
< 0,

and w1(1) = 0. Since, m(x) is strictly decreasing and we get

lim
x→0

m(x) = 0 > m(x) > lim
x→∞

m(x) = 1− log(3),

this implies the proof.
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For (2), Replacing x by (1 + 2 cosh(x))/3 in Lemma 1(2) we get

f(x) = log

(
2 cosh(x)

1 + cosh(x)

)
+

tanh(x)

x
− 1

<
log(1 + 2 cosh(x))/3

1 + log((1 + 2 cosh(x))/3)
+

tanh(x)

x
− 1

=
tanh(x)

x
− 1

1 + log((1 + cosh(x))/3)
,

which is negative by the first inequality of part (1).

Lemma 3. For a > b > 0, one can find an x in (0, π/2) and an y in (0,∞) such that

(1) a = (1 + sin(x))A and b = (1− sin(x))A,

(2) a = eyG and b = e−yG,

where A = A(a, b) and G = G(a, b).

Proof. Proof. It is immediate that x = arcsin((a − b)/(a + b)), so (1) follows. For (2), remark
that y = (1/2) log(a/b) > 0 is acceptable.

Corollary 4. For a > b > 0,

G

A
= cos(x),

H

A
= cos(x)2,

P

A
=

sin(x)

x
,
X

A
= excot(x)−1, (5)

L

G
=

sinh(y)

y
,
L

A
=

tanh(y)

y
,
H

G
=

1

cosh(y)
,
Y

G
= etanh(y)/y−1. (6)

where G = G(a, b), L = L(a, b) and P = P (a, b).

Proof. Utilizing Lemma 3 we get, a.b = cos(x)2A2, so cos(x) = G/A. Similarly,

P

A
=

(a− b)/(a+ b)

arcsin((a− b)/(a+ b))
=

sin(x)

x

and
x cotx− 1 = (A/P )(G/A)− 1 = G/P − 1,

so the last identity follows as well. Also, L(a, b) = G(ey + e−y)/2 = G sinh(y). The other
identities in (6) follow in the same manner.

3 Proofs of main results

This section contains the proofs of our theorems.

Theorem 7. For a > b > 0, we have

(1)
1

e
(G+H) < Y <

1

2
(G+H),
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(2) c ·GH < Y 2, c ≈ 0.95182.

Proof. The second inequality in (1) is equivalent to Y/G < (1 +H/G)/2, which can be written
as

etanh(x)/x − 1 <
1

2

(
1 + 1

1

cosh(x)

)
by (6), and this holds true by Lemma 2(2). Apply the inequality et > 1 + t(t > 0) and
sinh(x) > x, we get

etanh(x)/x) > 1 +
tanh(x)

x
> 1 +

1

cosh(x)
,

which is equivalent to the first inequality in (1) by (6).
For the proof of (2) remark that this inequality may be rewritten as (Y/G)2 > c.(H/G), or,

by (6) as
e2(tanh(x)/x−1) >

c

cosh(x)
, x > 0.

The above inequality may be written also as

f2(x) = log(cosh(x)) + 2
tanh(x)

x
> 2 + log c = c′. (8)

One has

x2 cosh(x)2f ′2(x) = x2 cosh(x) sinh(x) + 2(x− sinh(x) cosh(x)) = g(x).

By letting x = t/2 (t > 0),

g(x) =
1

8
(t2 − 8) sinh(t) + t = h(t).

Clearly, for t > 2
√
2 ≡ 2.82843 one has h(t) > 0. For t ∈ (0, 2

√
2), by examining the graphs

of elementary functions a(t) = sinh(t)/t and b(t) = 8/(8 − t2), we get that there is a unique
t0 ≈ 1.66575 in (0,

√
2) such that a(t) = b(t) and a(t) < b(t) for t < t0 and a(t) > b(t) for

t > t0. This means that h(t) < 0 for t < t0 and h(t) > 0 for t > t0. In other words, the
point x0 = t0/2 is a minimum point of the function f2(x), i.e., f2(x) ≥ f2(x0) = c′ ≈ 1.95062.
Finally, one has c = ec

′−2 ≈ 0.95182.

Remark 9. The inequality (G+ h)/e < Y implies

1

3
(2H +G) < Y. (10)

Indeed, this is equivalent to (3 − e)G > (2e − 3)H by G > H . Now, the inequality (10) in turn
implies GH2 < Y 3, as the arithmetic mean of H, H, and G is greater than their geometric mean.

Our following result improves the classical inequality G < L.

Theorem 11.

G2 <

√
H2I3

G
< IY < IG < L2. (12)
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Proof. In [11], it is proved that Y > LG/A . Since H = G2/A and (L/G)2 > I/G, we get

Y 2 >
H2I

G
=
G3I

A2
.

By inequality I3 > A2G (see [12]), we obtain easily the first two inequalities of (12). For the
proof of the last two inequalities of (12), see [11] and [2], respectively.

Remark 13. By (6), the Identric mean I(a, b) = 1/e(aa/bb)1/(a−b) can be deduced to I/G =

ex/ tanh(x)−1. Combining this with Y/G = etanh(x)/x−1 we get

log

(
I

G

)
=
A

L
− 1, and log

(
Y

G

)
=
L

A
− 1. (14)

Since u + 1/u > 2 for u distinct from 1, we get log(I/G) + log(Y/G) > 0 from (14). This
implies the following inequality:

G2 < IY.

Utilizing the inequalities Y > H and I >
√
AL (see [11–13]) and (12), we get the following

relation
H
√
AL < L2. (15)

Using the identily H = G2/A, (15) may be rewritten as

G2A < L3,

which is a famous inequality of Leach and Sholander. Clearly (12) refines this relation.

Another proof of Theorem 7(1). By identity (14) we get the following identity connecting the
means I and Y :

1 + log(Y/G) = 1/(1 + log(I/G)). (16)

In [13], Sándor proved that
I > (2A+G)/3,

equivalently

1 + log

(
I

G

)
> 1 + log

(
1 + 2x

3

)
,

where x = A/G > 1. Now, as H = G2/A, inequality (1) may be written as

log

(
Y

G

)
< log

(
1 + 1/x

2

)
= log

(
2x

1 + x

)
.

By (16) one has

log

(
Y

G

)
< 1/

(
1 + log

(
1 + 2x

3

))
− 1 < log

(
2x

1 + x

)
,

equivalently (
1 + log

(
2x

1 + x

))
.

(
1 + log

(
1 + 2x

3

))
> 1,

which holds true by Lemma 1 (2).
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Corollary 17. For a > b > 0, one has the following double inequality

(a− b)2

4(a2 + ab+ b2)
< log

(
G

Y

)
<

(a− b)2

a2 + 10ab+ b2
.

Proof. It is proved in [14]

1

3

(a− b)2

(a+ b)2
< log

(
I

G

)
<

1

12

(a− b)2

ab
.

By using identity (11), after certain elementary transformations, we get the desired
inequalities.

Corollary 18. For a > b > 0, one has

1. log

(
X

A

)
<
π

2

G

A
− 1,

2. 2

(
1− A

P

)
< log

(
X

A

)
<

(
P

A

)2

.

Proof. By definition, log(X/A) = G/P − 1. Now, it is well-known that A/P < pi/2 (see [15]).
Observing G/P = (G/A)(A/P ), since (1) follows. Double inequality in (2) follows from the
identity for log(X/A) and the double inequality A2G < P < (2A+G)/3, (see [15]).

Proof of Theorem B. For the following series representation

A

P
=
∞∑
n=0

n(2n, n)

4n(2n+ 1)
tn,

A

G
=
∞∑
n=0

(2n, n)

4n
tn, (19)

see [18]. Applying the following identities

A

P
=
A

G

(
2− log

(
X

A

))
,

log

(
X

A

)
=
G

A

(
A

P
− A

G

)
,

together with (19), we get (1).
For (2), we use the series representation (see Sándor, 1993, [14]):

1 + log

(
I

G

)
=
∞∑
n=0

cnt
n,

where cn = 1/(2n+ 1). Applying the identity 1 + log(Y/G) = 1/(1 + log(I/G)) we will write

1/
∞∑
n=0

cnt
n

as a power series
1 + b1t+ b2t

2 + b3t
3 + . . .+ bnt

n + . . . .
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This implies that the product of power series with coefficients cn as well as bn is equal to 1. By
making the product of two power series, and identifying the coefficients (i.e. all new coefficient
with indexes n ≥ 1 will be zero), we get:

1

3
+ a1 = 0,

1

5
+ a1/3+ a5 = 0, . . . , 1/(2n+1)+ a1/(2n−1)+ a2/(2n−3)+ . . .+ a(n−1)/3+ an = 0.

These relations will give recurrently all coefficients bn. �

Theorem 20. One has

(1)
G− Y
A− L)

<
Y +G

2A
<

3G+H

4A
< 1,

(2) L <
2G+ A

3
< X < L(X,A) < P <

2A+G

3
< I .

Proof. Clearly, L(Y,G) = (G − Y )A/(A − L). By the definition of Y , and utilizing the
inequalities L < (A + G)/2 and Y < (G + H)/2, we the first and second inequality in (1).
The last inequality of (1) is obvious, since G and H < A.

For (2), the first inequality is due to B. C. Carlson (see [4, 12]), while the second one appears
in [11]. The last two inequalities are proved in [15] and [14], respectively. The third inequality is
obvious because X < A. So we have to prove only L(X,A) < P . By the inequality A − X <

P −G [11, Theorem 2.10], we get

L(X,A) =
A−X

log(A/X)
=

(A−X)P

P −G
< P.

From the part (1) of the above theorem we get Y > L + G − A, which is similar to
X > A+G− P .

Remark 21. Neuman–Sándor [9] proved that L(G,A) > L. Since X > G, we easily get
L(X,A) > L(G,A) > L, so we get the following refinement of inequality L < P :

L < L(G,A) < L(X,A) < P.
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