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Abstract: The General Euclidean Algorithm (GEA) is the natural generalization of the Euclidean
Algorithm (EA) and equivalent to Semi Regular Continued Fractions (SRCF). In this paper, we
consider the finite case with entries in GEA natural numbers. Consider the Euclidean Division. In
GEA we want the divider to be bigger than the absolute value of the remainder. Thus, we take two
divisions except for the case the remainder is zero. However, for our help, we consider the non
Euclidean remainder without the negative sign so as not to take the absolute value of it for the next
step of the algorithm as we need to have two positive integers. So, it occurs a binary tree except
for the before last vertex of its path which gives one division as the remainder is zero. This paper
presents mainly a criterion with which we can find all the shortest paths of this tree and not only
the one that Valhen–Kronecker’s criterion [3] gives. In terms of SRCF, this criterion gives all the
SRCF expansions of a rational number t with the same length as the Nearest Integer Continued
Fraction (NICF) expansion of t. This criterion, as we shall see, is related to the golden ration.
Afterwards, it is presented a theorem which connects the Fibonacci sequence with the difference
between the longest and the shortest path of this tree, a theorem which connects the Fibonacci
sequence with the longest path of this tree and a different proof of a theorem which occurs by
[1] and [3] which connects the pell numbers with the shortest path of the aforementioned tree.
After that, it is proven a connection of this tree to the harmonic and the geometric mean and in
particular two new criteria of finding a shortest path are constructed based on this two means. In
the final chapter, it is an algorithm, which has an “opposite” property of the EA, property which
has been proven in [2] and has to do with the number of steps Least Remainder Algorithm (LRA)
needs to be finished in relation to EA and the signs of the remainders of LRA path.
Keywords: Euclidean algorithm, Euclidean tree, Valhen–Kroneckers theorem.
AMS Classification: 11A05.

1 Introduction

We begin by defining the GEA, give an example and present the notation we will use for the rest
of this paper. It is easy to prove the equivalence of GEA and SRCF.
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Let a ∈ N, b ∈ N, a > b. Also, for the algorithm to proceed beyond the first step, we suppose
that b - a. Then there is q ∈ N such that

qb < a < (q + 1)b (1.1)

We now set
r = a− qb (1.2)

for which we show easily that
0 < {r, b− r} < b (1.3)

Now we can write down the first step of the General Euclidean Algorithm (GEA) for the pair
(a,b), which is

a = qb+ r, 0 < r < b

a = (q + 1)b− (b− r), 0 < b− r < b (1.4)

What we did for (a, b), we do now for the pairs (b, r), (b, b− r) and we continue until the remain-
ders are zero.

Lets see an example by applying the GEA for the pair (8, 5)

3 = 1 · 2 + 1 // 2 = 2 · 1 + 0

5 = 1 · 3 + 2

33

++
8 = 1 · 5 + 3

33

++

3 = 2 · 2− 1 // 2 = 2 · 1 + 0

5 = 2 · 3− 1 // 3 = 3 · 1 + 0

5 = 2 · 2 + 1 // 2 = 2 · 1 + 0

8 = 2 · 5− 2

33

++
5 = 3 · 2− 1 // 2 = 2 · 1 + 0

Now we substract the leaves and we add a root vertex, let 13 = 1 · 8 + 5. Thus, the Euclidean tree
< 8, 5 > assumes the form

3 = 1 · 2 + 1

5 = 1 · 3 + 2

33

++
8 = 1 · 5 + 3

33

++

3 = 2 · 2− 1

13 = 1 · 8 + 5

33

''

5 = 2 · 3− 1

5 = 2 · 2 + 1

8 = 2 · 5− 2

33

++
5 = 3 · 2− 1
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It is clear that the number of the directed paths and the length of each, which is what we will
examine in this paper, do not change.

Knowing the divisor and the remainder of a vertex, we can find its children and hence we can
write the < 8, 5 > as

[2, 1]

[3, 2]

66

((
[5, 3]

66

((

[2, 1]

[8, 5]

66

!!

[3, 1]

[2, 1]

[5, 2]

66

((
[2, 1]

Euclidean tree < 8, 5 >

This is how we will write the Euclidean Trees from now on. Also, for the remainder of this paper,
we shall mean “directed path” whenever we say “path” and “Euclidean tree” whenever we say
“tree”.

Hence (1.4) becomes
[b, r]

[a, b]

55

))
[b, b− r]

Tree 1

(Tree < a, b > first step)

2 Basic definitions and lemmas

In the second chapter we give some definitions and prove some lemmas which we will use exten-
sively throughout this paper.

Lemma 2.1. Consider the tree < a1, a2 > and a path of it, the

[a1, a2]→ . . .→ [aρ−1, aρ]→ [aρ, aρ+1]

where ρ ≥ 4 and [aρ, aρ+1] leaf of < a1, a2 >.
1. If there is λ ∈ N with 1 < λ ≤ ρ − 2 such that [aλ, aλ+1] → . . . → [aρ, aρ+1] is not a

shortest path (SP) of subtree < aλ, aλ+1 > (respectively longest path), then for every k ∈ N with
1 ≤ k < λ we have that the paths [ak, ak+1] → . . . → [aρ, aρ+1] aren’t SP (respectively LP) of
< ak, ak+1 >.
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2. If the path of the assertion is a SP of < a1, a2 > (respectively LP), then for every λ ∈ N
with 1 < λ ≤ ρ− 2, the paths [aλ, aλ+1]→ . . .→ [aρ, aρ+1] are SP of < aλ, aλ+1 > (respectively
LP).

Proof. For the first: Let λ ∈ N with 1 < λ ≤ ρ− 2 such that [aλ, aλ+1]→ . . .→ [aρ, aρ+1] is not
a SP of < aλ, aλ+1 >. Then we choose one which is, the

[aλ, aλ+1]→ [aλ+1, a
′
λ+2]→ . . .→ [a′m, a

′
m+1]

Then for every k ∈ N with 1 ≤ k < λ, the path

[ak, ak+1]→ . . .→ [aλ, aλ+1]→ . . .→ [a′m, a
′
m+1]

is shorter than
[ak, ak+1]→ . . .→ [aλ, aλ+1]→ . . .→ [aρ, aρ+1]

and hence the latter is not SP of < ak, ak+1 >. We do the same in case it is LP.
For the second: We have that [a1, a2] → . . . → [aρ, aρ+1] is LP of < a1, a2 >. Suppose now

there is λ0 ∈ N with 1 < λ0 ≤ ρ − 2 such that [aλ0 , aλ0+1] → . . . → [aρ, aρ+1] is not LP of
< aλ0 , aλ0+1 >. Then we choose one which is, the

[aλ0 , aλ0+1]→ [aλ0+1, a
′
λ0+2]→ . . .→ [a′m, a

′
m+1]

Then the path
[a1, a2]→ . . .→ [aλ0 , aλ0+1]→ . . .→ [a′m, a

′
m+1]

is longer than the given one which results in a contradiction. We do the same in case it is SP. �

Before we continue to the central theorem of this paper, we will need two definitions and
lemmas.

Definition 2.2. Let a ∈ N, b ∈ N, q ∈ N with (1.1),(1.2). Now let k ∈ Z with k < q and
a′ = a− kq. The first step of GEA of (a′, b) is

a′ = (q − k)b+ r, 0 < r < b

a′ = (q − k + 1)b− (b− r), 0 < b− r < b

or
[b, r]

[a′, b]

55

))
[b, b− r]

We call < a′, b >, < a, b > equivalent trees.

We notice immediately that
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Lemma 2.3. Let the equivalent trees < a, b >, < a′, b >. Then the children of the root vertex
are the same and also for every vertex of < a, b > except for the root vertex, we have that: If it
is found in SP of < a, b > (respectively in LP) then it is found in SP of < a′, b > (respectively in
LP) and the converse.

Definition 2.4. Let a ∈ N, b ∈ N, q ∈ N with (1.1),(1.2). Then qb < a < (q + 1)b. Equivalently
qb < (2q + 1)b− a < (q + 1)b and hence the first step of GEA of ((2q + 1)b− a, b) is

(2q + 1)b− a = qb+ (b− r), 0 < b− r < b

(2q + 1)b− a = (q + 1)b− r, 0 < r < b

or
[b, b− r]

[(2q + 1)b− a, b]

33

++
[b, r]

We call < a, b >, < (2q + 1)b− a, b > inverse trees.

We notice immediately that

Lemma 2.5. Let the inverse trees < a, b >, < (2q + 1)b − a, b >. Then the children of two
root vertices are the same and also for every vertex of < a, b > except for the root vertex, we
have that: If it is not found in SP of < a, b > (respectively in LP), then it is not found in SP of
< (2q + 1)b− a, b > (respectively in LP) and the converse.

3 The main Theorem with some Corollaries

This chapter is dedicated to the main theorem of this paper and some corollaries. This theorem
gives us all the shortest paths of the Euclidean Tree instead of the one Valhen–Kronecker’s theo-
rem gives us. Also the state of the theorem by itself provides us a way to treat other problems as
we shall see in the rest of the paper. By putting q = 1, golden ratio appears.

Theorem 3.1. (Master Theorem) Let a ∈ N, b ∈ N, q ∈ N, qb < a < (q+ 1)b, r = a− qb. Then
I. If (q+ −1+

√
5

2
)b < a < (q+1)b, then the vertex [b, r] is not found in SP of< a, b > and [b, b−r]

is not found in LP of < a, b >.
II. If qb < a < (q + 3−

√
5

2
)b, then [b, b − r] is not found in SP of < a, b > and [b, r] is not found

in LP of < a, b >.
IIIa. If (q + 1

2
)b < a < (q + −1+

√
5

2
)b, then [b, b − r] is not found in LP of < a, b > and [b, r],

[b, b− r] are found in SP of < a, b >.
IIIb. If (q + 3−

√
5

2
)b < a < (q + 1

2
)b, then [b, r] is not found in LP of < a, b > and [b, r], [b, b− r]

are found in SP of < a, b >.
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IV. If (q + 1
2
)b = a, then

[b, 1]

[a, b]

66

((
[b, 1]

Proof. We will reduce the proof by proving the following assertion.

Assertion. It is enough to show the cases IV, I, IIIa.
Proof of the Assertion. The case IV is trivial. Now we suppose that the theorem holds for
the case I and let the pair (a, b) be in case II, that is, qb < a <

(
q + 3−

√
5

2

)
b, q ∈ N and

equivalently
(
q + −1+

√
5

2

)
b < (2q + 1)b− a < (q + 1)b which means that the pair (a′, b′) where

a′ = (2q+ 1)b− a, b′ = b, q′ = q, r′ = a′− q′b′ = b− r and b′− r′ = r, is in case I. By applying
the theorem for the pair (a′, b′) we have that [b′, r′] = [b, b − r] is not in SP of < a′, b′ > and
[b′, b′− r′] = [b, r] is not in LP of < a′, b′ > and by Lemma 2.5, we have that [b, r] is not in LP of
< a, b > and [b, b − r] is not in SP of < a, b >. Thus if the theorem holds for the case I, then it
holds for the case II.

We do the same for the case IIIb by supposing that the theorem holds for the case IIIa. �

Now we continue with the proof of Master Theorem. We will apply induction on b. The smallest
b for which there is a ∈ N: (a, b) is in case I, is b = 3. Then a = 2k + 3, k ∈ N and by Lemma
2.3 we can take k = 1:

[2, 1]

[3, 2]

66

((
[5, 3]

66

((

[2, 1]

[3, 1]

where we can easily confirm the assertion of the theorem.
Now the smallest b for which there is a ∈ N: (a, b) is in case IIIa, is b = 5. Then

a = 3k + 5, k ∈ N and by Lemma 2.3 we can take k = 1:

[2, 1]

[3, 2]

66

((
[5, 3]

66

((

[2, 1]

[8, 5]

66

!!

[3, 1]

[2, 1]

[5, 2]

66

((
[2, 1]

where we can easily confirm the assertion of the theorem.
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Now, due to the Assertion above, we don’t have to examine the cases II and, IIIb. Also it is
enough to confirm the theorem for these two pairs (5, 3) and (8, 5) before we apply the induction
but this can be seen only through the rest of the theorem. Now let us assume that the theorem is
true for all cases when the divisor is less than b.
Case I In this case we have (q + −1+

√
5

2
)b < a < (q + 1)b. By replacing a = qb+ r we take

r < b <
1 +
√

5

2
r (3.5)

The relationship (3.5) implies that the pair (b, r) either is in case II or IIIa or IIIb. We write

(b, r) ∈ {II, III} (3.6)

In addition, (3.5) implies r < b < 2r from which we take the first step of GEA for (b, r):

b = 1 · r + (b− r), 0 < b− r < r

b = 2 · r − (2r − b), 0 < 2r − b < r

or
[r, b− r]

[b, r]

55

))
[r, 2b− r]

We combine the last tree with Tree 1

[r, b− r]

[b, r]

44

**
[a, b]

55

))
[r, 2r − b]

[b, b− r]

Tree 2

As b = r mod (b− r), the subtrees of the Tree 2, < b, b− r >, < r, b− r > are equivalent
and hence if the [b, b− r] was in LP of < a, b >, then by Lemma 2.3, the same should be happen
for [r, b−r] which is a contradiction as [r, b−r] is in the second step of the algorithm and [b, b−r]
is in the first.

Now we will show that [b, r] is not found in SP of < a, b >. To show that we have to prove
that the paths

[a, b]→ [b, r]→ [r, b− r]→ . . .

[a, b]→ [b, r]→ [r, 2r − b]→ . . .

aren’t SP of < a, b >. The first path cannot be a SP of < a, b > as < r, b− r >, < b, b− r > are
equivalent trees and in a different step of Tree 2 (see previous paragraph).
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So it remains to show that the path

[a, b]→ [b, r]→ [r, 2r − b]→ . . .

is not a SP of < a, b >. Now from (3.6) we suppose that (b, r) ∈ II and afterwards we will
suppose that (b, r) ∈ III. So from the hypothesis that for every number less than b the theorem is
true, we take that [r, 2r − b] is not in SP of < b, r > and immediately by Lemma 2.1, [r, 2r − b]
is not in SP of < a, b > and hence this path is not a SP of < a, b >. Now we suppose that
(b, r) ∈ III. Then by inductive hypothesis [r, b − r], [r, 2r − b] are in SP of < b, r >. If now we
suppose that [r, 2r − b] is in SP of < a, b >, then the same thing must be happen for its sibling
[r, b− r] as they are at the same step of the algorithm and they both are in SP of < b, r >, but, in
the previous paragraph, we showed that [r, b− r] is not SP of < a, b >.
Case IIIa In this case we have

(
q + 1

2

)
b < a <

(
q + −1+

√
5

2

)
b. By replacing a = qb+r we take(

1 +
−1 +

√
5

2

)
r < b < 2r (3.7)

Equivalently 2(b− r) < b <
(

2 + −1+
√
5

2

)
(b− r) and that implies that the pair (b, b− r) is either

in case II or III
(b, b− r) ∈ {II, III} (3.8)

Also from (3.7) we take

r < b < 2r (3.9)

2(b− r) < b < 3(b− r) (3.10)

From (3.9) we take Tree 2 (see the proof for Case I) and from (3.10) we take the first step of the
GEA for (b, b− r):

b = 2(b− r) + (2r − b), 0 < 2r − b < b− r
b = 3(b− r)− (2b− 3r), 0 < 2b− 3r < b− r

or
[b− r, 2r − b]

[b, b− r]
33

++
[b− r, 2b− 3r]

Now we combine the last tree with Tree 2

[r, b− r]

[b, r]

33

++
[a, b]

55

##

[r, 2r − b]

[b− r, 2r − b]

[b, b− r]
33

++
[b− r, 2b− 3r]

Tree 3
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In this case IIIa we have to prove that [b, b − r] is not found in LP of < a, b > and [b, r],
[b, b − r] are found in SP of < a, b >. The proof of [b, b − r] not being in LP of < a, b > is the
same as in Case I.

Now, in order to prove that [b, r], [b, b− r] are in SP of < a, b > we have to show that at least
one of the two paths

[a, b]→ [b, r]→ [r, b− r]→ . . .

[a, b]→ [b, r]→ [r, 2r − b]→ . . .

is a SP of < a, b > and at least one of the two paths

[a, b]→ [b, b− r]→ [b− r, 2r − b]→ . . .

[a, b]→ [b, b− r]→ [b− r, 2b− 3r]→ . . .

is a SP of < a, b >. [r, b − r] is not in SP of < a, b > (see proof of Case I) and hence we
immediately exclude [a, b] → [b, r] → [r, b − r] → . . . from possible paths that are SP of
< a, b >.

As r ≡ b − r mod (2r − b), the subtrees < r, 2r − b >, < b − r, 2r − b > of Tree 3 are
equivalent. Thus from Lemma 2.3 and because there are in the same step of the algorithm, we
have that either both [r, 2r − b], [b − r, 2r − b] is in SP of < a, b > or none of them. If both are,
then [a, b] → [b, r] → [r, 2r − b] → . . . and [a, b] → [b, b − r] → [b − r, 2r − b] → . . . are SP
of < a, b > and hence [b, r], [b, b − r] are in SP of < a, b > and so Case IIIa is proven. We now
consider that both [r, 2r−b], [b−r, 2r−b] are in SP of< a, b > and we will make a contradiction.

So, let [r, 2r − b], [b − r, 2r − b] not be in SP of < a, b >. Thus, it remains the path
[a, b] → [b, b − r] → [b − r, 2b − 3r] → . . . as the unique path from the four paths above
which must be SP of < a, b >. Then by Lemma 2.1, [b, b− r]→ [b− r, 2b− 3r]→ . . . is SP of
< b, b− r > and so [b− r, 2b− 3r] is in SP of < b, b− r >.

Now we will use the relation (3.8) to make a contradiction. From (3.8) we suppose (b, b−r) ∈
II and hence from the inductive hypothesis [b − r, 2b − 3r] is not in SP of < b, b − r >. And
finally we suppose from (3.8), (b, b− r) ∈ III. Then by inductive hypothesis, both [b− r, 2r− b],
[b − r, 2b − 3r] are in SP of < b, b − r > and because [b − r, 2b − 3r] is in SP of < a, b > we
take that the same thing must be happen to its sibling [b − r, 2r − b] which contradicts to our
assumption.

Corrollary 3.2. Let the tree < a, b > with ab < a < (a+ 1)b, q ∈ N, r = a− qb and max(a, b)

is the length of a LP of < a, b > and min(a, b) is the length of a SP of < a, b >. Then
1. The next three are equivalent:
1.1 (a, b) ∈ I
1.2 min(a, b) = min(b, r) = min(b, b− r) + 1,

max(a, b) = max(b, r) + 1

1.3 min(a, b) = min(b, r)

2. The next three are equivalent:
2.1 (a, b) ∈ IIIa
2.2 min(a, b) = min(b, r) + 1 = min(b, b− r) + 1,
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max(a, b) = max(b, r) + 1

2.3 min(b, r) = min(b, b− r),
max(a, b) = max(b, r) + 1

3. The next three are equivalent:
3.1 (a, b) ∈ IIIb
3.2 min(a, b) = min(b, r) + 1 = min(b, b− r) + 1,

max(a, b) = max(b, b− r) + 1

3.3 min(b, r) = min(b, b− r),
max(a, b) = max(b, b− r) + 1

4. The next three are equivalent:
4.1 (a, b) ∈ II
4.2 min(a, b) = min(b, b− r) + 1 = min(b, r) + 1,

max(a, b) = max(b, b− r) + 1

4.3 min(a, b) = min(b, b− r)

Proof. We only have to prove the first and the second and to show that, we use the same argu-
ments as for the Assertion in the beginning of the proof of the Master Theorem.

For 1. (1.1⇒1.2). We have that (a, b) ∈ I and hence by the Master Theorem, [b, r] is not
in SP of < a, b > and [b, b − r] is not in LP of < a, b > and so, as at least one of the siblings
must be necessarily SP or LP of < a, b >, [b, b − r] is in SP of < a, b > and [b, r] in LP.
Then, as [b, r], [b, b − r] are the children of [a, b], it is clear that min(a, b) = min(b, b − r) + 1,
max(a, b) = max(b, r) + 1.

In addition, in Case I, we have Tree 2 and the relationship (3.6) which is (b, r) ∈ {II, III}. Then
from the Master Theorem [r, b− r] is in SP of < b, r > and hence min(b, r) = min(r, b− r) + 1.
As now < r, b − r >, < b, b − r > are equivalent trees, by Lemma 2.3 we take min(r, b − r) =

min(b, b− r) and hence min(b, r) = min(b, b− r) + 1.
(1.2⇒1.3). Trivial
(1.3⇒1.1). Let (a, b) ∈ {II, III}. Then by the Master Theorem [b, r] is in SP of < a, b > and

hence min(a, b) = min(b, r) + 1 which contradicts our assumption.
For 2. The proof for 2 is the same as for 1, except for (2.3⇒2.1). So let min(b, r) =

min(b, b − r), max(a, b) = max(b, r) + 1. Now we assume that (a, b) /∈ IIIa and hence
(a, b) ∈ {II, IIIb, II} .

Let(a, b) ∈ I. Then by (1.1⇒1.2) we take min(b, r) = min(b, b − r) + 1 which contradicts
the hypothesis.

Let now (a, b) ∈ { II, IIIb } . Then by the Master Theorem, [b, r] is not in LP of < a, b >

and [b, b − r] is in LP of < a, b > and hence max(b, r) < max(b, b − r) and max(a, b) =

max(b, b− r) + 1 and so max(b, r) < max(b, b− r) = max(a, b)− 1 = max(b, r) and we arrive
at a contradiction.
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Corrollary 3.3. Let < a, b > with qb < a < (q + 1)b, q ∈ N, r = a − qb and A(a, b) =

max(a, b)−min(a, b). Then
1. If (a, b) ∈ I , then A(a, b) = A(b, r) + 1.
2. If (a, b) ∈ IIIa, then A(a, b) = A(b, r) = A(b, b− r) + 1.
3. If (a, b) ∈ II , then A(a, b) = A(b, b− r) + 1.
4. If (a, b) ∈ IIIb, then A(a, b) = A(b, b− r) = A(b, r) + 1.

Proof. We only need to prove 1. and 2. (as previously).
For 1. We have from Corollary 3.2 that min(a, b) = min(b, r), max(a, b) = max(b, r) + 1

and hence A(a, b) = max(a, b)−min(a, b) = max(b, r)−min(b, r) + 1 = A(b, r) + 1.
For 2. We have from Corollary 3.2 that min(a, b) = min(b, r)+1, max(a, b) = max(b, r)+1

and hence A(a, b) = max(b, r)−min(b, r) = A(b, r).
Now we will prove that A(b, r) = A(b, b − r) + 1. In case IIIa we have also Tree 3 and

(3.7) which implies that (b, r) ∈ I and hence, by part 1. of this Corollary, we take A(b, r) =

A(r, b − r) + 1. As now < r, b − r >, < b, b − r > are equivalent trees, by Lemma 2.3 we take
max(r, b−r) = max(b, b−r), min(r, b−r) = min(b, b−r) and hence A(r, b−r) = A(b, b−r)
and hence A(b, r) = A(b, b− r) + 1. �

Corrollary 3.4. Every tree has two LP.

Proof. Let < a, b >. Then by the Master Theorem, except for case IV, one of the children of
[a, b] is in LP. So we choose the vertex which is in LP of < a, b > and we continue by doing the
same with every new vertex. Finally, we reach a vertex which is in case IV, because otherwise
the process would not end. Now, we know by the Master Theorem in this case, that there are two
paths with one vertex each, and hence we take the two LP for every tree. �

4 Three Theorems on the relation
between the GEA, Fibonacci and Pell numbers

This chapter presents three interesting theorems. The first two have to do with the Fibonacci
sequence, the Longest and Shortest Paths of the Euclidean Tree. The third is a combination of [1]
and [3] and here we prove it by using the tools that Theorem 3.1 gives us and has to do with Pell
numbers and the Shortest Paths of the Euclidean Tree.

Lemma 4.1. Consider < a, b > under (1.2),(1.3). We know that r, b − r are the two remainders
in the first step of the GEA for (a, b). Then
1. If r′ = max{r, b − r}, then max(a, b) = max(b, r′) + 1. If also (a, b) ∈ {I, II} then
min(a, b) = min(b, r′) and hence A(a, b) = A(b, r′) + 1, and if (a, b) ∈ III , then min(a, b) =

min(b, r′) + 1.
2. If r′′ = min{r, b − r}, then min(a, b) = min(b, r′′) + 1. If also (a, b) ∈ III , then A(a, b) =

A(b, r′′) + 1.
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Proof. We will only do the proof for the cases I, IIIa. Let (a, b) ∈ I. Then by (3.5), r′ = r,
r′′ = b− r, and by Corollary 3.2, we take

max(a, b) = max(b, r) + 1 = max(b, r′) + 1

min(a, b) = min(b, r) + 1 = min(b, r′) + 1

min(a, b) = min(b, b− r) + 1 = min(b, r′′) + 1

A(a, b) = max(a, b)−min(a, b) = max(b, r′)−min(b, r′) = A(b, r′) + 1

Let now (a, b) ∈ IIIa. Then by (3.9), r′ = r, r′′ = b− r and by Corollary 3.2,

max(a, b) = max(b, r) + 1 = max(b, r′) + 1

min(a, b) = min(b, r) + 1 = min(b, r′) + 1

min(a, b) = min(b, b− r) + 1 = min(b, r′′) + 1

and by Corollary 3.3
A(a, b) = A(b, b− r) + 1 = A(b, r′′) + 1

Lemma 4.2. Consider the tree < a, b > under (1.1),(1.2): qb < a < (q + 1)b, r = a − qb.
We know that r, b − r are the two remainders in the first step of the GEA for (a, b). Let r′ =

max{r, b− r}, r′′ = min{r, b− r}. Also let Fn be the Finonacci sequence with F1 = F2 = 1 and
βn+2 = 2βn+1 + βn with β1 = 2, β2 = 5. Then
1. Let b > Fn+2. Then if (a, b) ∈ III , then Fn < r′′ and if (a, b) ∈ {I, II} then Fn+1 < r′.
2. Let b < βn+2. If (a, b) ∈ III , then r′′ < βn+2/2 and if (a, b) ∈ {I, II}, then r′′ < βn+1.

Proof. We will only do the proof for the cases I, IIIa.
For 1. Let (a, b) ∈ I. Then by (3.7) we have b < 1+

√
5

2
and equivalently r > b−1+

√
5

2
. Also

from the assertion we have b ≥ 1 + Fn+2 and equivalently b−1+
√
5

2
≥ (1 + Fn+2)

−1+
√
5

2
, and

thus r > (1 + Fn+2)
−1+

√
5

2
. In Lemma 4.3 we will show that 1 + Fn+2 >

1+
√
5

2
Fn+1 and so

r > Fn+1. Also from (3.5) we take r′ = r. Let now (a, b) ∈ IIIa. Then by (3.7) we have
b > −1+

√
5

2
r ⇔ b− r > 3−

√
5

2
b. Now from Lemma 4.3, 1 + Fn+1 >

1+
√
5

2
Fn ⇒ Fn+2

3−
√
5

2
> Fn.

From the assertion, b > Fn+2 ⇔ b3−
√
5

2
> 3−

√
5

2
Fn+2 and hence b − r > Fn and, because

r′′ = b− r by (3.9), we take r′′ > Fn.

For 2. Let (a, b) ∈ I. Then by (3.5) we have r′′ = b − r and b − r < 3−
√
5

2
b and so, from the

assertion, r′′ < 3−
√
5

2
βn+2 Finally, from Lemma 4.3, we take r′′ < βn+1. Let now (a, b) ∈ IIIa.

Then by (3.7) we have r′′ = b− r and r′′ < b/2 and, by the assertion, r′′ < βn+2/2.

Lemma 4.3. Let Fn be the Fibonacci sequence with F1 = F2 = 1 and βn+2 = 2βn+1 + βn with
β1 = 2, β2 = 5. Then
1. max(Fn+3, Fn+2) = n,

max(F2n+4, F2n+3) = n+ 1,

A(F2n+4, F2n+3) = n.

2. 1 + Fn+1 >
−1+

√
5

2
Fn.
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3. βn > −1+
√
5

2
βn+1 .

4. min(βn+1, βn) = n

Proof. For 1. For n = 1, max(F4, F3) = max(3, 2),min(F6, F5) = min(8, 5). We calculate the
tree < 8, 5 > which includes the tree < 3, 2 >.

[2, 1]

[3, 2]

66

((
[5, 3]

66

((
[2, 1]

[8, 5]

66

""

[3, 1]

[2, 1]

[5, 2]

66

((
[2, 1]

and so max(F4, F3) = 1 = n and min(F6, F5) = 2 = n+ 1.
We assume now that this is true for n = k. We will show that is true for n = k + 1 also.

First we will show that 3
2
Fk+3 < Fk+4 < 2Fk+3 which means that (Fk+4, Fk+3) ∈ {I, IIIa}.

3
2
Fk+3 < Fk+4 ⇔ 3Fk+3 < 2Fk+3 + 2Fk+2 ⇔ Fk+2 + Fk+1 < 2Fk+2 ⇔ Fk+1 < Fk+2

and Fk+4 < 2Fk+3 ⇔ Fk+2 < Fk+3. Thus we take the first step of the GEA for (Fk+4, Fk+3).

Fk+4 = Fk+3 + Fk+2, Fk+2 < Fk+3

Fk+4 = 2Fk+3 − Fk+2, Fk+1 < Fk+3

or

[Fk+3, Fk+2]

[Fk+4, Fk+3]

33

++
[Fk+3, Fk+1]

and because (Fk+4, Fk+3) ∈ {I, IIIa}we have from the Master Theorem that max(Fk+4, Fk+3) =

max(Fk+3, Fk+2) + 1 and by the inductive hypothesis = k + 1.
Now for (F2k+6, F2k+5) we will show that (F2k+6, F2k+5) ∈ IIIa. Equivalently we will show

that
3

2
F2k+5 < F2k+6 < F2k+5

1 +
√

5

2

We will only prove that F2k+6 < F2k+5
1+
√
5

2
. We use induction: F2k+6 < F2k+5

1+
√
5

2
⇔

F2k+4
1+
√
5

2
< F2k+5 ⇔ F2k+4

1+
√
5

2
< F2k+4 + F2k+3 ⇔ F2k+4 < F2k+3

1+
√
5

2
which is

true by the inductive hypothesis. Thus we take the first step of GEA for the pair (F2k+6, F2k+5).

F2k+6 = F2k+5 + F2k+4, F2k+4 < F2k+5

F2k+6 = 2F2k+5 − F2k+3, F2k+3 < F2k+5
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or
[F2k+5, F2k+4]

[F2k+6, F2k+5]

33

++
[F2k+5, F2k+3]

and because (F2k+6, F2k+5) ∈ IIIa we have from the Corollary 3.2 that min(F2k+6, F2k+5) =

min(F2k+5, F2k+3) + 1. As now < F2k+5, F2k+3 >,< F2k+4, F2k+3 > are equivalent trees
(F2k+5 ≡ F2k+4 mod F2k+3) by Lemma 2.3 we take min(F2k+5, F2k+3) = min(F2k+4, F2k+3)

and hence min(F2k+6, F2k+5) = min(F2k+4, F2k+3) + 1 and by the inductive hypothesis = k+ 2.
Now we will show the third relation of part 1. of this lemma: A(F2n+4, F2n+3) =

max(F2n+4, F2n+3)−min(F2n+4, F2n+3) = (2n+ 1)− (n+ 1) = n

For 2. For n = 1, 1 + F2 >
1+
√
5

2
F1 ⇔ 2 > 1+

√
5

2
, which holds true. For n = 2, 1 + F3 >

1+
√
5

2
F2 ⇔ 3 > 1+

√
5

2
which is also true. Now we suppose that for every n ≤ k, 1 + Fn+1 >

1+
√
5

2
Fn and we will show that 1 + Fk+2 >

1+
√
5

2
Fk+1. By the inductive hypothesis, 1 + Fk >

1+
√
5

2
Fk−1 and as 3+

√
5

2
> 1, we get

3 +
√

5

2
+ Fk >

1 +
√

5

2
Fk−1

⇔ −1 +
√

5

2
Fk +

1 +
√

5

2
> Fk−1

⇔ 1 +
√

5

2
Fk +

1 +
√

5

2
> Fk−1 + Fk = Fk+1

⇔ Fk + 1 >
−1 +

√
5

2
Fk+1

⇔ Fk+1 + Fk + 1 >
1 +
√

5

2
Fk+1

⇔ 1 + Fk+2 >
1 +
√

5

2
Fk+1

For 3. For n = 1 it holds, β1 > 3−
√
5

2
β2 ⇔ 2 > 3−

√
5

2
5 ⇔ 5

√
5 > 11 ⇔ 125 > 121. For

n = 2, β2 > 3−
√
5

2
β3 ⇔ 5 > 3−

√
5

2
12⇔ 6

√
5 > 13⇔ 180 > 169, a valid statement.

Now, let the inductive hypothesis hold true for every n ≤ k. Then

βk−1 >
3−
√

5

2
βk

βk >
3−
√

5

2
βk+1

⇔ 2βk > (3−
√

5)βk+1 and by adding

βk−1 + 2βk >
3−
√

5

2
(βk + 2βk+1)

⇔ βk+1 >
3−
√

5

2
βk+2

For 4. Like the first.
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Theorem 4.4. Let
Σ′n = {A(c, d) : F2n+1 < d < c, gcd(c, d) = 1}

where A(c, d) = max(c, d)−min(c, d) and Fn the F ibonacci sequence. Then min Σ′n = n

Proof. It is clear that it is enough to show that min Σn = n where

Σn = {A(c, d) : d < c, 1 + F2n+1 ≤ d ≤ F2n+3, gcd(c, d) = 1}

For n = 1, we calculate Σ1 = {A(4, 3), A(5, 3), A(5, 4), A(7, 4), A(6, 5), A(7, 5), A(8, 5), A(9, 5)}.
As the pairs of trees {< 4, 3 >,< 5, 3 >}, {< 5, 4 >,< 7, 4 >}, {< 6, 5 >,< 9, 5 >},
{< 7, 5 >,< 8, 5 >} are inverse, we will calculate only A(5, 3), A(5, 4), A(8, 5), A(6, 5). By the
first Tree of the proof of Lemma 4.3, we take A(8, 5) = max(8, 5)−min(8, 5) = 3− 2 = 1 and
A(5, 3) = max(5, 3)−min(5, 3) = 2− 1 = 1. Now by

[4, 1]

[5, 4]

55

))
[3, 1]

[4, 3]

55

))
[2, 1]

[3, 2]

55

))
[2, 1]

we have A(5, 4) = 2 and similarly A(6, 5) = 3. Then min Σ1 = 1 = n. Now we suppose that for
every n ≤ k the theorem is true. We will show that min Σk+1 = k + 1.

Consider the tree < a1, a2 > with

gcd(a1, a2) = 1 (4.11)

Then there is m ∈ N such that
A(a1, a2) ∈ Σm (4.12)

We assume also that
k + 1 = m (4.13)

Now we choose a path from < a1, a2 > by using the following procedure: The first vertex of
the path is the root vertex [a1, a2]. Then if (a1, a2) ∈ { I, II } we choose the next vertex to be
that with the greatest remainder of the two remainders which occur by a one-step application of
the GEA for (a1, a2). Then from Lemma 4.1 we take A(a1, a2) = A(a2, a3) + 1 where a3 is the
greatest remainder. Now, if (a1, a2) ∈ III, we choose the next vertex to be that with the smallest
remainder, and hence by Lemma 4.1, A(a1, a2) = A(a2, a3) + 1, where a3 is now the smallest
remainder. We apply this procedure recursively and let the chosen path be

[a1, a2]→ [a2, a3]→ . . .→ [aρ, 1]

Then we have A(aλ, aλ+1) = A(aλ+1, aλ+2) + 1 where 1 ≤ λ ≤ ρ− 1 and aρ+1 = 1. Then

A(a1, a2) = A(aσ, aσ+1) + σ − 1, 1 ≤ σ ≤ ρ (4.14)
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Now from (4.11) and by following the same arguments as in the Euclidean algorithm, we have

gcd(aσ, aσ+1) = 1, 1 ≤ σ ≤ ρ (4.15)

Let now % ∈ N be the greatest number such that

a% ≥ 1 + F2k+3 (4.16)

Then
a%+1 ≤ F2k+3 (4.17)

because if a%+1 > F2k+3 then a%+1 ≥ 1 + F2k+3 and hence % was not maximally chosen, a
contradiction. From (4.16) and Lemma 4.2 we obtain

F2k+1 < a%+1 (4.18)

From (4.15) we have
gcd(a%, a%+1) = 1 (4.19)

The relations (4.17),(4.18),(4.19) along with a% > a%+1 imply that A(a% > a%+1) ∈ Σk, and
hence by the inductive hypothesis

A(a%, a%+1) ≥ k (4.20)

Now from (4.14) we have

A(a1, a2) = A(a%, a%+1) + %− 1
(4.20)

≥ k + %− 1

Thus
A(a1, a2) ≥ k + %− 1 (4.21)

Let % = 1. Then by (4.12),A(a%, a%+1) ∈ Σm, and by (4.13),A(a%, a%+1) ∈ Σk+1. So 1+F2k+3 ≤
a%+1, which contradicts (4.17) and hence % ≥ 2 and along with (4.21) we obtain

A(a1, a2) ≥ k + 1 (4.22)

Finally we let a2 = F2k+5, a1 = F2k+6. For these choises, we have by Lemma 4.3 that

A(a1, a2) = k + 1 (4.23)

The relations (4.22),(4.23) give us min Σk+1 = k + 1, which completes the induction.
Another way to state Theorem 4.4 is the following: Let Λn = {d ∈ N : A(c, d) = n, c <

d, gcd(c, d) = 1}. Then max Λn = F2n+3.

Theorem 4.5. Let

Bn = {max(a, b) : 1 + Fn+1 ≤ b ≤ Fn+2, b < a, gcd(a, b) = 1}

Then minBn = n
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Proof. For n = 1, we have B1 = {max(3, 2),max(4, 3),max(5, 3)}. As < 4, 3 >,< 5, 3 >

are inverse trees, we need only calculate max(3, 2),max(4, 3). By the proof of Theorem 4.4, in
the beginning, we have from the tree < 5, 4 > that max(3, 2) = 1,max(4, 3) = 2 and hence
minB1 = 1 = n. Now we suppose that the theorem is true for every n ≤ k and we will show
that minBk+1 = k + 1. �

The proof of Theorem 4.5 is very similar to the proof of Theorem 4.4. We will only point out
the differences.

Insted of (4.12), we have max(a1, a2) ∈ Bm.
The chosen path from < a1, a2 > is: The first vertex is the root vertex [a1, a2]. Now we

choose the next vertex to be the one with the greatest remainder and we continue in the same way
until we reach a leaf. Then, from Lemma 4.1, we have max(aλ, aλ+1) = max(aλ+1, aλ+2) + 1,
1 ≤ λ ≤ ρ− 1. Then, max(a1, a2) = max(aσ, aσ+1) + σ − 1, 1 ≤ σ ≤ ρ. (instead of (4.14)).

Instead of (4.16) we have a% ≥ 1 + Fk+2 and in the end we choose a1 = Fk+4, a2 = Fk+3.
Another way to state Theorem 4.5 is the following: Let An = {b ∈ N : max(a, b) = n, a ∈

N, a > b, gcd(a, b) = 1}. Then maxAn = Fn+2.

Theorem 4.6. Let βn+2 = 2βn+1 + βn with β1 = 2, β2 = 5 and Γn = {min(a, b) : βn ≤ b <

βn+1, b < a, gcd(a, b) = 1}. Then max Γn = n.

Proof. For n = 1, Γ1 = {min(3, 2),min(4, 3),min(5, 3),min(5, 4),min(7, 4)} and again by
< 5, 4 > we have min(3, 2) = 1, min(4, 3) = min(5, 3) = 1,min(4, 3) = min(5, 3) =

1,min(5, 4) = min(7, 4) = 1 and hence max Γ1 = 1 = n.
Now we suppose that for every n ≤ k, the theorem is true and we will show that max Γk+1 =

k + 1.
Let (a1, a2) such that min(a1, a2) ∈ Γk+1. Then

βk+1 ≤ a2 < βk+2 (4.24)

gcd(a1, a2) = 1 (4.25)

and a2 < a1.
Now we consider the case where (a1, a2) ∈ I. Then by Corollary 3.3 we obtain

min(a1, a2) = min(a2, a3) + 1 (4.26)

where a3 is the smaller remainder between the two taken by applying one time the GEA for
(a1, a2). Also by (4.24) and Lemma 4.2 it holds that

a3 < βk+1 (4.27)

which, by the inductive hypothesis, means that min(a2, a3) ∈ Γλ where λ ≤ k. Thus by (4.26) we
have min(a1, a2) ≤ k+ 1. Now by Lemma 4.3 for a1 = βk+2, a2 = βk+1 we have min(a1, a2) =

k + 1 and hence max Γk+1 = k + 1.
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Let now (a1, a2) ∈ IIIa. Then, by Corollary 3.3,

min(a1, a2) = min(a2, a3) + 1 (4.28)

where a3 is the smaller remainder.
By (4.24) and Lemma 4.2

a3 < βk+2/2 (4.29)

By (3.7)
a3 < a2/2 (4.30)

By (4.29), we can consider two cases. If a3 < βk+1 then we follow the same arguments as in the
case (a1, a2) ∈ I after (4.27).

Now let
βk+1 ≤ a3 (4.31)

Then by (4.24),(4.31),(4.30) a2 > 2a3 ≥ 2βk+1 and hence

2βk+1 < a2 < βk+2 (4.32)

Now we will calculate the smaller remainder which occurs in the first step of GEA for (a2, a3).
First we see that, by (4.32) and (4.31)

a2 < βk+2 = 2βk+1 + βk < 3βk+1 ≤ 3a3

and hence by (4.30)
2a3 < a2 < 3a3

which means that the smaller remainder a4 is either a2 − 2a3 or 3a3 − a2 and to find it, we use
relations (4.31),(4.32):

2βk < βk+1

⇔ 4βk+1 + 2βk < 5βk+1

⇔ 2βk+2 < 5βk+1

⇒ 2a2 < 5a3

⇔ a2 − 2a3 < 3a3 − a2

and hence a4 = a2 − 2a3. By (4.31),(4.32) we obtain a4 < βk and thus, by the inductive
hypothesis, min(a3, a4) ≤ k−1. Finally by Corollary 3.3 we have min(a2, a3) = min(a3, a4)+1

and so by (4.28) we have

min(a1, a2) = min(a3, a4) + 2 ≤ (k − 1) + 2 = k + 1

and hence for a1 = βk+2, a2 = βk+1 by Lemma 4.3 we have min(a1, a2) = k + 1 and so
max Γk+1 = k + 1 in case (a1, a2) ∈ IIIa.

We treat cases II,IIIb similarly. �

Another way to state Theorem 4.6 is: Let ∆n = {b ∈ N : min(a, b) = n, a > b, gcd(a, b) =

1}. Then min ∆n = βn.
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5 Two criteria for finding the SP of the Euclidean tree
based on the geometric and the harmonic mean

In this chapter, we will prove two criteria, for finding a SP of the Euclidean Tree, resulting from
the Harmonic and the Geometric Mean.

The theorem of Vahlen-Kronecker [3] for the GEA for < a, b >, states that: If we choose the
children with the smaller remainder(or equal sometimes at the last step of the algorithm) at every
step, then we take a SP of < a, b >.

Equivalently, by letting r, b−r (r = a−qb) be the two remainders of the first step of the GEA
for (a, b), if b − r < r then [b, b − r] is in SP of < a, b > and if b − r > r then [b, r] is in SP of
< a, b >.

Again, equivalently, by replacing r = a− qb we have, if a > qb+(q+1)b
2

then [b, b− r] is in SP
of < a, b >, and if a < qb+(q+1)b

2
then [b, r] is in SP of < a, b >.

If now, instead of the arithmetic mean of qb and (q + 1)b, we consider the geometric mean,
we get the same result and almost the same happens in the case we consider the harmonic mean.

Theorem 5.1. Let < a, b > with (1.1)(1.2): qb < a < (q + 1)b, r = a− qb. Then

1. If a > b
√
q(q + 1), then [b, b− r] is in SP of < a, b > and if a < b

√
q(q + 1), then [b, r] is in

SP of of < a, b >.

2. If a > 2bq(q+1)
2q+1

and q ≥ 2, then [b, b− r] is in SP of < a, b >, and if a < 2bq(q+1)
2q+1

, then [b, r] is
in SP of < a, b >.

Proof. For 1. Let a > b
√
q(q + 1). To show that [b, b − r] is in SP of < a, b >, it is enough to

show that, by the Master theorem, (a, b) ∈ {I, III} and equivalently b(q + 3−
√
5

2
) < a. Thus by the

assertion, it is enough to show that q + 3−
√
5

2
<
√
q(q + 1). Let J(q) = q + 3−

√
5

2
−
√
q(q + 1).

Then J ′(q) = 1 − 2q+1√
q(q+1)

< 0 and so J is strictly decreasing. Thus it remains to show that

J(1) < 0. We calculate J(1) = 1−
√

2 + 3−
√
5

2
< 0.

Now let a < b
√
q(q + 1). Then, because the geometric mean is less than the arithmetic mean,

we obtain a < b(q + 1
2
). Hence, by the Master Theorem, we have what we required.

For 2. Let a < 2bq(q+1)
2q+1

. Then, because the harmonic mean is less than the arithmetic mean,
we argue as in the previous paragraph and obtain the result.

Now let a > 2bq(q+1)
2q+1

, q ≥ 2. To show that [b, b − r] is in SP of < a, b >, it is enough

to show that, by the Master Theorem, that (a, b) ∈ {I, III} and equivalently b(q − 3−
√
5

2
) < a.

thus by the assertion, it is enough to show that q + 3−
√
5

2
< 2q(q+1)

2q+1
for q ≥ 2. Let J(q) =

(2q + 1)(q + 3−
√
5

2
) − 2q(q + 1). Then J ′(q) = −2 +

√
5 > 0 which means that J is strictly

increasing and because J(2) = −11+
√
5

2
> 0 we have what we required.

Remarks.
1. We can combine the Vahlen-Kronecker criterion with the harmonic mean: If

2bq(q + 1)

2q + 1
< a < b(q +

1

2
), q ≥ 2

then (a, b) ∈ IIIb and so, both vertices are in SP of < a, b >.
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And in the case b(q + 1
2
) < a, q ≥ 2 we consider the inverse tree < a′, b > for which we

have, a′ < b(q + 1
2
) and Lemma 2.5 and we check if 2bq(q+1)

2q+1
< a′.

2. We can surpass the condition q ≥ 2 of the harmonic criterion by considering < a+ b, b >, the
equivalent tree of < a, b > because of the Lemma 2.3 and because the quotient of the first step of
GEA for (a+ b, b) is ≥ 2 and hence we apply the criterion for (a+ b, b) instead of (a, b).

6 A relation between two specific paths of the Euclidean tree

Here we construct an algorithm(NPA) which is based on the first theorem of [2] which presents a
connection between the Least Remainder Algorithm and the Euclidean Algorithm. We will prove
a similar theorem which connects EA with this new algorithm.

Consider < a, b > with (1.1)(1.2): qb < a < (q + 1)b, r = a− qb. Then we have (1.4) :

a = qb+ r, 0 < r < b

a = (q + 1)b− (b− r), 0 < b− r < b

From now on we will call r the positive remainder of the first step of GEA for (a, b) and b − r
the negative one. In the Euclidean algorithm we choose every time the vertex with the positive
remainder. Now we define the Least Remainder Algorithm (LRA): If (a, b) ∈ { I, IIIa } we
choose the next vertex to be that with the negative remainder ([b, b− r]) and in case (a, b) ∈ {II,
IIIb} we choose that with the positive one ([b, r]) and we continue this process until we reach a
leaf of < a, b >.

Theorem I of [2] states that, for a given pair (a, b), the number of vertices of the LRA
path(except the root vertex) which have negative remainder equals to the number of steps of
the Euclidean Algorithm minus the number of steps of LRA.

Now we will construct an algorithm for which we will prove a similar theorem. Algorithm
NP : If (a, b) ∈ { I, IIIa } we choose the next vertex to be that with the negative remainder
([b, b − r]). In case (a, b) ∈ { II, IIIb } we choose the next two vertices. The first is that with
the negative remainder and the next one that with the positive remainder. And we continue this
process until we reach a leaf of < a, b >.

According to the Master theorem, LRA gives a SP of < a, b >.

Theorem 6.1. For a given pair (a, b), the number of vertices of the LRA path(except the root
vertex) which have positive remainder equals to the number of steps of the NP Algorithm minus
the number of steps of LRA.

Proof. By the definition of LRA and NP algorithm when (a, b) ∈ {I, IIIa}, the two algorithms are
identical and they both follow the vertex with the negative remainder.

Let now (a, b) ∈ {II, IIIb}with (1.1)(1.2): qb < a < (q + 1)b, r = a − qb. In this case we
have a < b(q + 1

2
). By replacing a = qb+ r we take 0 < r < b/2 and equivalently

b− r < b < 2(b− r)
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which give us the first step of GEA for the pair (b, b− r):

b = 1 · (b− r) + r, 0 < r < b− r
b = 2 · (b− r)− (b− 2r), 0 < b− 2r < b− r

or

[b, r]

[a, b]

55

))
[b− r, r]

[b, b− r]
33

++
[b− r, b− 2r]

and equivalently by the definition of LRA and NP algorithm

[b, r]

[a, b]

LRA

+

55

NP

− ))
[b− r, r]

[b, b− r]
NP

+

33

−
++
[b− r, b− 2r]

As now b ≡ (b− r) mod r, < b, r >,< b− r, r > are equivalent trees and thus, by Lemma 2.3,
are identical except for the root vertex. Because also we have that the two algorithms are identical
in case (a, b) ∈ {I, IIIa}and follow the vertex with the negative remainder, it is clear that for every
vertex of the LRA path which have positive remainder corresponds an additional vertex for NP
path. And the sum of these additional vertices is the difference between the number of steps of
NP algorithm and LRA.
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[1] Dupré, A. Sur le nombre de divisions à effectuer pour obtenir le plus grand commun diviseur
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