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1 Introduction

Ramanujan studied summation of following infinite series (1.1) for x ≥ 0 and odd integer s in his
paper, titled ”Summation of a certain series”, through Hurwitz zeta function and Riemann zeta
function [3].

Φ(x, s) =
∞∑
k=0

1(√
x+ k +

√
x+ k + 1
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∞∑
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)s
.

Φ(x, s) and Φ(0, s) can be expressed in terms of Hurwitz zeta function ζ(x, s) and Riemann
zeta function ζ(s) respectively. In [4], he gave some finite expressions for sum of powers of n
natural numbers in terms of zeta function and Φ. Some of them are

√
1 +
√

2 + . . .+
√
n =

2

3
n

3
2 +

1

2

√
n− 1

4π
ζ

(
3

2

)
+

1

6
Φ(3, n). (1.2)

1
3
2 + 2

3
2 + . . .+ n

3
2 =

2n
5
2

5
+
n

3
2

2
+

√
n

8
− 3

16π2
ζ

(
5

2

)
+

Φ(5, n)

40
. (1.3)

36



Further, he pointed that the higher powers such as
∑n

k=1 k
5/2,

∑n
k=1 k

7/2, . . . are not so neat as
(1.2) and (1.3). Similar expressions for sum of powers of square root of first n natural numbers
are also found in [1, p.455-457].

In the present work, we study the summation of following infinite series for odd integer s
greater than 2n+ 2 and n ∈ N .

∞∑
k=0

(√
(x+ k)(x+ k + 1)

)n
(√

x+ k +
√
x+ k + 1

)s .
We give some finite expressions for sum of powers of first n natural numbers in terms of above
mentioned infinite series and Riemann zeta function. Moreover, we give some elegant expressions
for
∑n

k=1 k
5/2 and

∑n
k=1 k

7/2 in terms of single infinite series and Riemann zeta function as given
in (1.2) and (1.3).

2 Preliminaries

Definition 2.1. For n ∈ N , x ≥ 0 and s be an odd integer greater than 2n+ 2, then define

Φ(n, x, s) =
∞∑
k=0

(√
(x+ k)(x+ k + 1)

)n
(√

x+ k +
√
x+ k + 1

)s . (2.1)

From the definition 2.1, it is clear that

Φ(n, 0, s) =

{
Φ(n, 1, s) If n ∈ N

1 + Φ(n, 1, s) If n = 0.
(2.2)

Usually, the Hurwitz zeta function and Riemann zeta function [2, p.1027] are defined by

ζ(s, x) =
∞∑
k=0

1

(x+ k)s
and ζ(s) =

∞∑
k=1

1

ks

respectively. The functional equation satisfied by ζ(s) [2, p. 1028], viz

ζ(1− s) = 2(2π)−sΓ(s)ζ(s) cos
(πs

2

)
. (2.3)

Further, we have following identities from Ref [3]{
1s + 2s + . . .+ ns = ζ(−s)− ζ(−s, n+ 1).

1s + 3s + . . .+ (2n− 1)s = (1− 2s)ζ(−s)− 2sζ(−s, n+ 1).
(2.4)

Let

f(t, a, b) =
(
a+ b

√
t
)s

+
(
a− b

√
t
)s
. (2.5)
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Then, expand (2.5) by binomial theorem and after simplification, gives

2
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s
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)
as−2mb2m =

1

k!

∂k

∂tk
[f(t, a, b)]

∣∣∣∣
t=1

. (2.6)

3 Main results

Theorem 3.1. If s > 2m+ 2 and m ∈ W , then Φ(m,x, s) converges for all x ≥ 0.

Proof. From the definition 2.1

Φ(m,x, s) =
∞∑
k=0

(√
(x+ k)(x+ k + 1)

)m
(√

x+ k +
√
x+ k + 1

)s .
Using the inequality x+ k < x+ k + 1, x ≥ 0 and k ∈ W , gives

Φ(m,x, s) <
1

2s

∞∑
k=0

(x+ k + 1)m

(x+ k)
s
2

.

Using binomial theorem and definition of Hurwitz zeta function, yields

Φ(m,x, s) <
1

2s

m∑
n=0

(
m

n

)
ζ
(s

2
− n, x

)
. (3.1)

The right hand side of (3.1) exists if s
2
−m > 1. Hence, Φ(m,x, s) converges if s > 2m+2 .

Theorem 3.2. Let m ∈ N and s be an odd integer. If s > 4m+ 2, then

Φ(m,x, s− 2m) = −1

2

(
x2 − x

)m
2 g(x, s,m) (3.2)

+(−1)m+1 (s− 2m)!

s!

(s−1)/2∑
k=1,2-k

ζ(k − s/2, x)
f
(k)
m

k!
.

where

f (k)
m =

∂2m+k

∂am∂bm∂xk
[f(a, b, x)]

∣∣∣∣
a=1,b=1,x=1

(3.3)

g(x, s,m) = (−1)m
(√

x+
√
x− 1

)s−2m
+
(√

x−
√
x− 1

)s−2m
. (3.4)

Proof. For a, b ∈ R and x ≥ 0, define

γ(a, b, x) =
(
a
√
x+ b

√
x+ 1

)s
+
(
a
√
x− b

√
x+ 1

)s
(3.5)

−
(
a
√
x+ b

√
x− 1

)s − (a√x− b√x− 1
)s
.
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Using binomial theorem, expand right hand of (3.5) in ascending powers of
√
x and after simpli-

fication, that

γ(a, b, x) = 4

s−1
2∑

k=1,2-k

xs/2−k

s−1
2∑

m=k

(
s

2m

)(
m

k

)
as−2mb2m. (3.6)

Using (2.6) in (3.5) can be written as

γ(a, b, x) = 2

s−1
2∑

k=1,2-k

1

k!
xs/2−k

∂kf

∂tk

∣∣∣∣
t=1

. (3.7)

Replacing x by x + n and taking summation on both sides for n = 0, 1, 2, . . . and after simplifi-
cation, gives

∞∑
n=0

γ(a, b, x+ n) = 2

s−1
2∑

k=1,2-k

1

k!
ζ(k − s/2, x)

∂kf

∂tk

∣∣∣∣
t=1

. (3.8)

Differentiate (3.8) m times partially with respect to a and b, setting a = 1 and b = 1, then

∞∑
n=0

∂2m [γ(a, b, x+ n)]

∂am∂bm

∣∣∣∣
a=1,b=1

= 2

s−1
2∑

k=1,2-k

f
(k)
m

k!
ζ(k − s/2, x). (3.9)

where f (k)
m = ∂2m+k

∂am∂bm∂xk [f(a, b, x)]
∣∣∣
a=1,b=1,x=1

. Now, differentiate (3.5) m times partially with

respect to a and b, set a = 1 and b = 1, then

∂2mγ(x, a, b)

∂am∂bm
(s− 2m)!

s!
=
(
a
√
x+ b

√
x+ 1

)s−2m
(
√
x
√
x+ 1)m

+(−1)m
(
a
√
x− b

√
x+ 1

)s−2m
(
√
x
√
x+ 1)m

−
(
a
√
x+ b

√
x− 1

)s−2m
(
√
x
√
x− 1)m

−(−1)m
(
a
√
x− b

√
x− 1

)s−2m
(
√
x
√
x− 1)m.

Replace x by x+ n and then taking summation on both sides for n = 0, 1, 2, . . . and using (2.1),
gives

(s− 2m)!

s!

∞∑
n=0

∂2mγ(x+ n, a, b)

∂am∂bm

∣∣∣∣
a=1,b=1

= 2(−1)m+1φ(m,x, s− 2m)

−
(
x2 − x

)m/2
([√

x+
√
x− 1

]s−2m
+ (−1)m

[√
x−
√
x− 1

]s−2m)
.

Using (3.8) in above equation and after simplification, gives (3.2).
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Theorem 3.3. If m ∈ N and s > 2m+ 1 is an odd integer, then

Φ(m, 0, s− 2m) = 2(−1)m+1 (s− 2m)!

s!

(s−1)/2∑
k=1,2-k

f
(k)
m

k!
A(k). (3.10)

where

A(k) = (−1)
k−1
2 (2π)k−

s
2
−1Γ

(
1− k +

s

2

)
ζ
(

1− k +
s

2

)
cos

sπ

4
. (3.11)

Proof. Let x = 1 in (3.1). then

Φ(m, 0, s− 2m) = (−1)m+1 (s− 2m)!

s!

(s−1)/2∑
k=1,2-k

f
(k)
m

k!
ζ(k − s/2).

Using (2.3) and after simplification, gives (3.10).

Theorem 3.4. If m ∈ N and s > 4m+ 2 is an odd integer, then

∞∑
k=1

(
1√

2k+1
+ 1√

2k+3

)−m
(√

2k + 1 +
√

2k + 3
)s−2m = −C(m)

2

(
1√
2

)s

(3.12)

+2(−1)m+1 (s− 2m)!

s!

(s−1)
2∑

k=1,2-k

(
1− 2k− s

2

) f (k)
m

k!
A(k).

where

C(m) = im
[
(−1)m(1 + i)s−2m + (1− i)s−2m

]
. (3.13)

Proof. Put x = 1/2 in (3.1) and simplification, yields (3.12).

Theorem 3.5. If n ∈ N and s > 4m+ 2 is an odd integer, then

(s−1)
2∑

k=1,2-k

f
(k)
m

k!
S s

2
−k(n) =

(s−1)
2∑

k=1,2-k

f
(k)
m

k!

(
2A(k) + n

s
2
−k) (3.14)

+
(−1)ms!

(s− 2m)!

[
φ(m,n, s− 2m) +

1

2

(
n2 − n

)m
2 g(n, s,m)

]
.

Where Sm(n) =
∑n

k=1 k
m.
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Proof. Put x = n in (3.2), then

Φ(m,n, s− 2m) = −1

2

(
n2 − n

)m
2 g(n, s,m)

+(−1)m+1 (s− 2m)!

s!

(s−1)/2∑
k=1,2-k

ζ(k − s/2, n)
f
(k)
m

k!
.

Using (2.4) and after simplification, we find[
Φ(m,n, s− 2m) +

1

2

(
n2 − n

)m
2 g(n, s,m)

]
(−1)m+1s!

(s− 2m)!

=

(s−1)/2∑
k=1,,2-k

(
2A(k)− Ss/2−k(n) + ns/2−k) f (k)

m

k!
.

After simplification, completes the proof.

4 Evaluation of certain infinite series

4.1 Summation of infinite series through main results

In this subsection, some infinite series are expressed in finite terms using theorems in section 3.

Example 4.1. Let m = 1 and s = 7, 9 in (3.2). Then

∞∑
k=1

(
1√
k

+ 1√
k+1

)−1
(√

k +
√
k + 1

)4 =
105

8π3
ζ

(
7

2

)
− 1

2π
ζ

(
3

2

)
.

∞∑
k=1

(
1√
k

+ 1√
k+1

)−1
(√

k +
√
k + 1

)6 =
945

8π4
ζ

(
9

2

)
− 75

8π2
ζ

(
5

2

)
.

Let m = 2 and s = 11, 13 in (3.10). Then

∞∑
k=1

(
1√
k

+ 1√
k+1

)−2
(√

k +
√
k + 1

)5 =
10395

32π5
ζ

(
11

2

)
− 945

32π3
ζ

(
7

2

)
.

∞∑
k=1

(
1√
k

+ 1√
k+1

)−2
(√

k +
√
k + 1

)7 =
135135

32π6
ζ

(
13

2

)
− 7245

16π4
ζ

(
9

2

)
+

27

8π2
ζ

(
5

2

)
.
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Example 4.2. Let m = 1 and s = 7, 9 in (3.12). Then

∞∑
k=1
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√
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∞∑
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(
1√
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(√
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√

2k + 3
)6 =

1

2
+ 945

8
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2π4
ζ

(
9

2

)
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2
√
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√

2π2
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(
5

2
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.

Ramanujan shown that the higher powers of S 5
2
(n) are not so neat as (1.2) and (1.3). In the

following example, we express S 5
2
(n) and S 7

2
(n) in a single infinite series.

Example 4.3. Let s = 7 and m = 1 in (3.14). Then

15/2 + 25/2 + . . .+ n5/2 =
35

64π3
ζ

(
7

2

)
+

2

7
n

7
2 +

1

2
n

5
2 +

41

168
n

3
2 − 1

28
n

1
2

+
1

168

∞∑
k=0

2n+ 2k + 1 + 5
√

(n+ k)(n+ k + 1)(√
n+ k +

√
n+ k + 1

)5 .

Let s = 9 and m = 1 in (3.14). Then

17/2 + 27/2 + . . .+ n7/2 =
975

2304π4
ζ

(
9

2

)
+

11

9
n

9
2 +

137

288
n

7
2 +

7

24
n

5
2

− 29

2304
n

1
2 − 1

2304

∞∑
k=0

10n+ 10k + 5 + 14
√

(n+ k)(n+ k + 1)(√
n+ k +

√
n+ k + 1

)7 .

4.2 Summation of other infinite series

The following infinite series

∞∑
k=0

(x+ k + 1)m/2(√
x+ k +

√
x+ k + 1

)s+1 and
∞∑
k=0

(x+ k)m/2(√
x+ k +

√
x+ k + 1

)s+1 .

can be evaluated through the expression

m∑
n=0

Am−nΦ(m,n, s− 2n).

Where A’s are constant and Φ is still defined by (2.1). The following are evaluation of these type
of infinite series through Φ.

Example 4.4. Consider the following expression

∞∑
k=0

2x+ 2k + 1 + A
√

(x+ k)(x+ k + 1)(√
x+ k +

√
x+ k + 1

)s (4.1)

= Φ(0, x, s− 2) + (A− 2)Φ(1, x, s).
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Let A = 1 in (4.1). Then

Φ(0, x, s− 2)− 3Φ(1, x, s) =
∞∑
k=0

√
x+ k

3
+
√
x+ k + 1

3(√
x+ k +

√
x+ k + 1

)s+1 . (4.2)

Let A = −3 in (4.1) and replace s by s+ 2. Then

Φ(0, x, s)− Φ(1, x, s+ 2) =
∞∑
k=0

√
x+ k + 1

3 −
√
x+ k

3(√
x+ k +

√
x+ k + 1

)s+1 . (4.3)

Adding and subtracting (4.2) and (4.3), then

∞∑
k=0

√
x+ k + 1

3(√
x+ k +

√
x+ k + 1

)s+1 (4.4)

=
1

2
[Φ(0, x, s− 2)− 3Φ(1, x, s) + Φ(0, x, s)− Φ(1, x, s+ 2)] .

∞∑
k=0

√
x+ k

3(√
x+ k +

√
x+ k + 1

)s+1 = (4.5)

=
1

2
[Φ(0, x, s− 2)− 3Φ(1, x, s)− Φ(0, x, s) + Φ(1, x, s+ 2)] .

Example 4.5. Consider the following expression

∞∑
k=0

[
(x+ k)2 + (x+ k + 1)2(√
x+ k +

√
x+ k + 1

)s + A

√
(x+ k)(x+ k + 1)(2x+ 2k + 1)(√

x+ k +
√
x+ k + 1

)s
+ B

(x+ k)(x+ k + 1)(√
x+ k +

√
x+ k + 1

)s
]

= Φ(0, x, s− 4) + (A− 4)Φ(1, x, s− 2)

+(B − 2A+ 2)Φ(2, x, s).

Let A = 1 and B = 1 in (4.1). Then

∞∑
k=0

(x+ k)5/2 − (x+ k + 1)5/2(√
x+ k +

√
x+ k + 1

)s+1 (4.6)

= Φ(0, x, s− 4)− 3Φ(1, x, s− 2) + Φ(2, x, s).

Let A = −1 and B = 1 in (4.1). Then

∞∑
k=0

(x+ k + 1)5/2 + (x+ k)5/2(√
x+ k +

√
x+ k + 1

)s+1 (4.7)

= Φ(0, x, s− 2)− 5Φ(1, x, s) + 6Φ(2, x, s+ 2).
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Adding and subtracting (4.6) and (4.7), then

∞∑
k=0

(x+ k + 1)5/2(√
x+ k +

√
x+ k + 1

)s+1 =
1

2
[Φ(0, x, s− 4)− 3Φ(1, x, s− 2)

+Φ(2, x, s) + Φ(0, x, s− 4)− 5Φ(1, x, s− 2) + 6Φ(2, x, s)] .
∞∑
k=0

(x+ k)5/2(√
x+ k +

√
x+ k + 1

)s+1 =
1

2
[Φ(0, x, s− 4)− 3Φ(1, x, s− 2)

+Φ(2, x, s)− Φ(0, x, s− 2) + 5Φ(1, x, s)− 6Φ(2, x, s+ @)] .

5 Conclusion

The summation of certain infinite series Φ(m, 0, n) involving square root of powers of natural
numbers has been studied in this paper. The sum of powers of square root of first n natural
numbers has been expressed in terms of infinite series defined in (2.1) and Riemann zeta function.
Some numerical examples are given to evaluate summation of the infinite series Φ(m, 0, n) and
sum of powers of square root of first n natural numbers.
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