Notes on Number Theory and Discrete Mathematics ISSN 1310-5132 Vol. 20, 2014, No. 3, 31-35

# A note on the number of perfect powers in short intervals

#### Rafael Jakimczuk

División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina

e-mail: jakimczu@mail.unlu.edu.ar

**Abstract:** Let N(x) be the number of perfect powers that do not exceed x. In this note we obtain asymptotic formulae for the difference  $N(x+x^{\theta})-N(x)$ , where  $1/2<\theta<2/3+1/7$ . We also prove that if  $\theta=1/2$  the difference  $N(x+x^{\theta})-N(x)$  is zero for infinite x arbitrarily large.

**Keywords:** Distribution of perfect powers, Short intervals.

AMS Classification: 11A99, 11B99.

## 1 Preliminary results

A natural number of the form  $m^n$  where m is a positive integer and  $n \geq 2$  is called a perfect power. The first few terms of the integer sequence of perfect powers are

$$1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128...$$

In this article, N(x) denotes the number of perfect powers that do not exceed x. That is, the perfect power counting function.

Let  $p_n$  be the n-th prime. Consequently we have,

$$p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, p_6 = 13, \dots$$

Jakimczuk [1] proved the following theorem.

**Theorem 1.1.** Let  $p_n$   $(n \ge 2)$  be the n-th prime. The following asymptotic formula holds

$$N(x) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n-1, \ p_{i_1} \dots p_{i_k} < p_n} x^{\frac{1}{p_{i_1} \dots p_{i_k}}} + g(x) x^{\frac{1}{p_n}}, \tag{1}$$

where  $\lim_{x\to\infty} g(x) = 1$ . The expression  $1 \le i_1 < \cdots < i_k \le n-1$ ,  $p_{i_1} \dots p_{i_k} < p_n$  indicates that the sum is taken over the k-element subsets  $\{i_1, \dots, i_k\}$  of the set  $\{1, 2, \dots, n-1\}$  such that the inequality  $p_{i_1} \dots p_{i_k} < p_n$  holds.

For example:

If n = 4 then Theorem 1.1 becomes,

$$N(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x} - \sqrt[6]{x} + q(x)\sqrt[7]{x},$$

where  $\lim_{x\to\infty} g(x) = 1$ .

If n = 5 then Theorem 1.1 becomes,

$$N(x) = \sqrt{x} + \sqrt[3]{x} + \sqrt[5]{x} - \sqrt[6]{x} + \sqrt[7]{x} - \sqrt[10]{x} + g(x)\sqrt[11]{x},$$

where  $\lim_{x\to\infty} g(x) = 1$ .

The following lemma is an immediate consequence of the binomial Theorem.

**Lemma 1.2.** We have the following formula

$$(1+x)^{1/\alpha} = 1 + \frac{1}{\alpha}x + f_{\alpha}(x)x^{2},$$

where

$$\lim_{x \to 0} f_{\alpha}(x) = \frac{1}{2} \frac{1}{\alpha} \left( \frac{1}{\alpha} - 1 \right)$$

### 2 Main results

**Lemma 2.1.** If  $n \ge 4$  (that is  $p_n \ge 7$ ) and  $0 < \lambda < \frac{1}{6}$  are fixed numbers we have the following asymptotic formula,

$$N(x + x^{\frac{1}{2} + \frac{1}{p_n} + \lambda}) = N(x) + \frac{1}{2} x^{\frac{1}{p_n} + \lambda} + o\left(x^{\frac{1}{p_n}}\right). \tag{2}$$

*Proof.* Let us consider the function g(x) (see (1)). Suppose that  $0 < \beta < 1$ . We have (Lemma 1.2)

$$g(x+x^{\beta})(x+x^{\beta})^{\frac{1}{p_{n}}} = g(x+x^{\beta})x^{\frac{1}{p_{n}}} \left(1 + \frac{x^{\beta}}{x}\right)^{\frac{1}{p_{n}}}$$

$$= g(x+x^{\beta})x^{\frac{1}{p_{n}}} \left(1 + \frac{1}{p_{n}}\frac{x^{\beta}}{x} + f_{p_{n}}\left(\frac{x^{\beta}}{x}\right)\left(\frac{x^{\beta}}{x}\right)^{2}\right)$$

$$= g(x+x^{\beta})x^{\frac{1}{p_{n}}} + o\left(x^{\frac{1}{p_{n}}}\right) = \left(g(x+x^{\beta}) - g(x)\right)x^{\frac{1}{p_{n}}} + g(x)x^{\frac{1}{p_{n}}}$$

$$+ o\left(x^{\frac{1}{p_{n}}}\right) = g(x)x^{\frac{1}{p_{n}}} + o\left(x^{\frac{1}{p_{n}}}\right), \tag{3}$$

since  $\lim_{x\to\infty} g(x) = 1$ .

On the other hand, if  $s \ge 2$  is a positive integer we have (Lemma 1.2)

$$(x + x^{\beta})^{\frac{1}{s}} = x^{\frac{1}{s}} \left( 1 + \frac{x^{\beta}}{x} \right)^{\frac{1}{s}} = x^{\frac{1}{s}} \left( 1 + \frac{1}{s} \frac{x^{\beta}}{x} + f_s \left( \frac{x^{\beta}}{x} \right) \left( \frac{x^{\beta}}{x} \right)^2 \right)$$

$$= x^{\frac{1}{s}} + \frac{1}{s} x^{\frac{1}{s} + \beta - 1} + f_s \left( \frac{x^{\beta}}{x} \right) x^{\frac{1}{s} + 2\beta - 2}.$$

$$(4)$$

Equation (1) gives

$$N(x+x^{\beta}) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n-1, \ p_{i_1} \dots p_{i_k} < p_n} (x+x^{\beta})^{\frac{1}{p_{i_1} \dots p_{i_k}}}$$

$$+ g(x+x^{\beta}) (x+x^{\beta})^{\frac{1}{p_n}}.$$
(5)

Substituting (3) and (4) into (5) and using (1) we find that

$$N(x+x^{\beta}) = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n-1, \ p_{i_1} \dots p_{i_k} < p_n} (x+x^{\beta})^{\frac{1}{p_{i_1} \dots p_{i_k}}}$$

$$+ g(x+x^{\beta}) \left(x+x^{\beta}\right)^{\frac{1}{p_n}} = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n-1, \ p_{i_1} \dots p_{i_k} < p_n} \left(x^{\frac{1}{p_{i_1} \dots p_{i_k}}} \right)^{\frac{1}{p_{i_1} \dots p_{i_k}}}$$

$$+ \frac{1}{p_{i_1} \dots p_{i_k}} x^{\frac{1}{p_{i_1} \dots p_{i_k}} + \beta - 1} + h_{p_{i_1} \dots p_{i_k}} (x) x^{\frac{1}{p_{i_1} \dots p_{i_k}} + 2\beta - 2} + g(x) x^{\frac{1}{p_n}} + o\left(x^{\frac{1}{p_n}}\right)$$

$$= N(x) + \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n-1, \ p_{i_1} \dots p_{i_k} < p_n} \left(\frac{1}{p_{i_1} \dots p_{i_k}} x^{\frac{1}{p_{i_1} \dots p_{i_k}} + \beta - 1} \right)$$

$$+ h_{p_{i_1} \dots p_{i_k}} (x) x^{\frac{1}{p_{i_1} \dots p_{i_k}} + 2\beta - 2} + o\left(x^{\frac{1}{p_n}}\right). \tag{6}$$

where

$$h_{p_{i_1}\dots p_{i_k}}(x) = f_{p_{i_1}\dots p_{i_k}}\left(\frac{x^\beta}{x}\right)$$

That is,

$$N(x+x^{\beta}) = N(x) + \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < \dots < i_k \le n-1, \ p_{i_1} \dots p_{i_k} < p_n} \left( \frac{1}{p_{i_1} \dots p_{i_k}} x^{\frac{1}{p_{i_1} \dots p_{i_k}} + \beta - 1} + h_{p_{i_1} \dots p_{i_k}}(x) x^{\frac{1}{p_{i_1} \dots p_{i_k}} + 2\beta - 2} \right) + o\left(x^{\frac{1}{p_n}}\right).$$
 (7)

Note that among the numbers  $p_{i_1} ldots p_{i_k}$  are the primes (when k = 1, see (7))  $p_1 = 2$ ,  $p_2 = 3$ , ...,  $p_{n-1}$ . Consequently  $p_1 = 2$  and  $p_2 = 3$  are the least numbers  $p_{i_1} ldots p_{i_k}$ . We wish eliminate all exponents in (7), namely

$$\frac{1}{p_{i_1}\dots p_{i_k}}+\beta-1,$$

and

$$\frac{1}{p_{i_1}\dots p_{i_k}} + 2\beta - 2,$$

except the exponent that correspond to  $p_{i_1} \dots p_{i_k} = p_1 = 2$ , namely

$$\frac{1}{2} + \beta - 1. \tag{8}$$

If we choose

$$\beta = \frac{1}{2} + \frac{1}{p_n} + \lambda,\tag{9}$$

where  $0 < \lambda < \frac{1}{6}$  then (see (8) and (9))

$$\frac{1}{2} + \beta - 1 = \frac{1}{p_n} + \lambda > \frac{1}{p_n},\tag{10}$$

$$\frac{1}{p_{i_1} \dots p_{i_k}} + \beta - 1 < \frac{1}{p_n},\tag{11}$$

since  $p_{i_1} \dots p_{i_k} \geq 3$ . On the other hand, if  $p_{i_1} \dots p_{i_k} \geq 3$  then (see (11))

$$\frac{1}{p_{i_1} \dots p_{i_k}} + 2\beta - 2 < \frac{1}{p_{i_1} \dots p_{i_k}} + \beta - 1 < \frac{1}{p_n},\tag{12}$$

Besides if  $p_{i_1} \dots p_{i_k} = p_1 = 2$  then

$$\frac{1}{2} + 2\beta - 2 < \frac{1}{p_n},\tag{13}$$

since  $p_n \ge 7$ . Consequently if  $\beta$  satisfies (9) then equation (7) becomes (see (9), (10), (11), (12) and (13))

$$N(x + x^{\frac{1}{2} + \frac{1}{p_n} + \lambda}) = N(x) + \frac{1}{2} x^{\frac{1}{p_n} + \lambda} + o\left(x^{\frac{1}{p_n}}\right).$$

That is, equation (2). The lemma is proved.

**Theorem 2.2.** If  $1/6 < \omega < 1/7 + 1/6$  is a fixed number then we have the following asymptotic formula

$$N(x + x^{\frac{1}{2} + \omega}) = N(x) + \frac{1}{2}x^{\omega} + o\left(x^{\frac{1}{p_n}}\right),$$

where  $p_n$  is the greatest prime that appear in the solutions  $(p_n, \lambda)$  to the equation

$$\frac{1}{p_n} + \lambda = \omega \qquad (n \ge 4)$$

*Proof.* If  $1/6 < \omega < 1/7 + 1/6$  then the equation

$$\frac{1}{p_n} + \lambda = \omega \qquad (n \ge 4)$$

has a finite number of solutions  $(p_n, \lambda)$ . Consequently equation (2) becomes

$$N(x + x^{\frac{1}{2} + \omega}) = N(x) + \frac{1}{2}x^{\omega} + o\left(x^{\frac{1}{p_n}}\right),$$

where  $p_n$  is the greatest prime in this finite number of solutions. The theorem is proved.

**Theorem 2.3.** If  $0 < \omega \le 1/6$  is a fixed number then we have the following asymptotic formula

$$N(x + x^{\frac{1}{2} + \omega}) = N(x) + \frac{1}{2}x^{\omega} + o(x^{\alpha}),$$

for all  $0 < \alpha < \omega$ .

*Proof.* If  $0 < \omega \le 1/6$  then the equation

$$\frac{1}{p_n} + \lambda = \omega \qquad (n \ge 4)$$

has infinite solutions  $(p_n, \lambda)$ , where  $n \geq n_0$ . Consequently equation (2) becomes

$$N(x + x^{\frac{1}{2} + \omega}) = N(x) + \frac{1}{2}x^{\omega} + o(x^{\alpha}),$$

for all  $0 < \alpha < \omega$ . The theorem is proved.

**Theorem 2.4.** If  $0 < \epsilon < 1/7 + 1/6$  is a fixed number we have the following asymptotic formula,

$$N(x+x^{\frac{1}{2}+\epsilon}) = N(x) + \frac{1}{2}x^{\epsilon} + o(x^{\epsilon}).$$

$$(14)$$

*Proof.* Equation (2) can be written in the more weak form,

$$N(x + x^{\frac{1}{2} + \frac{1}{p_n} + \lambda}) = N(x) + \frac{1}{2} x^{\frac{1}{p_n} + \lambda} + o\left(x^{\frac{1}{p_n} + \lambda}\right).$$

If we write  $\epsilon = (1/p_n) + \lambda$  then  $0 < \epsilon < 1/7 + 1/6$ . The theorem is proved.

**Theorem 2.5.** If  $\epsilon > 0$  then we have the following limit,

$$\lim_{x \to \infty} \left( N(x + x^{\frac{1}{2} + \epsilon}) - N(x) \right) = \infty. \tag{15}$$

If the exponent is less than or equal to  $\frac{1}{2}$  this limit is false.

*Proof.* Limit (15) is an immediate consequence of equation (14). If the exponent is 1/2 then we have the difference  $N(x+x^{\frac{1}{2}})-N(x)$ . It is well-known (Theorem 3.1, [1]) that there exist infinite  $x=n^2$  such that  $N(n^2+n)-N(n^2)=0$ . The theorem is proved.

## References

[1] Jakimczuk, R., On the distribution of perfect powers, *Journal of Integer Sequences*, Vol. 14, 2011, Article 11.8.5.