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Abstract: Let N (z) be the number of perfect powers that do not exceed x. In this note we obtain
asymptotic formulae for the difference N (z + %) — N(x), where 1/2 < 0 < 2/3+1/7. We also
prove that if § = 1/2 the difference N (z + %) — N(z) is zero for infinite z arbitrarily large.
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1 Preliminary results

A natural number of the form m™ where m is a positive integer and n > 2 is called a perfect
power. The first few terms of the integer sequence of perfect powers are

1,4,8,9,16, 25,27, 32,36, 49, 64, 81, 100, 121,125,128 . . .

In this article, N (z) denotes the number of perfect powers that do not exceed x. That is, the
perfect power counting function.
Let p,, be the n-th prime. Consequently we have,

P1 = 27]92 - 3,])3 - 57]74 - 77p5 - ]-17p6 - 137 s
Jakimczuk [1] proved the following theorem.

Theorem 1.1. Let p,, (n > 2) be the n-th prime. The following asymptotic formula holds

n—1 :
N(z)=) (-1 > TP P 4 g(a)z, (1)
k=1 1< <--<1p<n—1, Diy --Pip, <Pn
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where lim, o g(z) = 1. The expression 1 < iy < --- < iy, <n—1, p; ...p;, < pp indicates
that the sum is taken over the k-element subsets {i1, . ..,i;} of the set {1,2, ..., n — 1} such that
the inequality p;, . ..p;, < p, holds.

For example:
If n = 4 then Theorem 1.1 becomes,

N(z) = Va + Vo + Ve -V + g(x)V/x,

where lim, . g(z) = 1.
If n = 5 then Theorem 1.1 becomes,

N(z) = Vo + Vo +Vr - Vo +Jr - Va+g(@) Ve,
where lim, . g(x) = 1.

The following lemma is an immediate consequence of the binomial Theorem.

Lemma 1.2. We have the following formula

1
(14 o)V =1+ —2 + fu(2)2?,
0]
where 11 /1
lim f,(z) = —— [ = — 1
tinyfo(e) = 5= (5 1)
2 Main results

Lemma 2.1. Ifn > 4 (thatis p, > 7) and 0 < \ < % are fixed numbers we have the following

asymptotic formula,
1, 1 1 1 1
N(z+ 22 5 ™) = N(z) + §xp7z+’\ +o (xP7> : )
Proof. Let us consider the function g(z) (see (1)). Suppose that 0 < § < 1. We have (Lemma
1.2)
1

BN\ pn
oo+ ) o+ )% = glo+ o (1+2)
xXr

1 28 B B\ 2
= g(x—l—a:ﬁ)xz%n <1+ ~ T + fon (x_) (a:_)
Pn T T T
1

= g(z+2%)amm +o <xr%n) = (g(z +2%) — g(z)) wia + g(x)Tim

1 1

+ o <xﬁ) =g(z)xr 4o (SUP") ; €)

since lim, o, g(z) = 1.



On the other hand, if s > 2 is a positive integer we have (Lemma 1.2)

1
1 AN 128 B AN
oo (1 2) (0 (2) (2))
x s x x x
I (x_ﬂ) Py
s x
Equation (1) gives

n—1
N(ZE + I’8> = (—1)k+1 Z (l’ 4 J/’B) Piy "1'Pik

1 1< << <n—1, Diy --Piy, <Pn

i

+ glz+2°) (z+27)r .

Substituting (3) and (4) into (5) and using (1) we find that

3
—

Nz +2°) = 3 (=1)k+1 S (c + %) 7

1 1< << <n—1, pil"'pik<p"

n—1
+ gz +a”) (w4 a”)r =) (-1 > (xmln

k=1 1<in <o <ip<n—1, pi; ...piy <pn

3

1 1 -1 1 26-9
Rt v + h/pil"'pik (x)xPnPi o ) + g($)xﬁ +o0 (JZ‘%”>
Diy - - Piy,

— k1 1 s A1
= N(@)+) (-1 > o
iy Dir

k=1 1<iy < <ip<n—1, pi; ...pi), <Pn

—L_— 1282 1
+ Dy, ()PP ) +o (:BPn) .

where
P
hpi1~~-Pik (SL’) - fph"'pik ;
That is,
n—1
N(z+2%) = N)+ 3 (—1)! >
k=1 1<in < <ig<n—1, pi; ...piy, <Pn

1 —L__4p-1 11932 1

)

&)

(6)

)

Note that among the numbers p;, ... p;, are the primes (when k = 1,see (7)) p1 = 2,p2 = 3, ...,

Pn—1. Consequently p; = 2 and p, = 3 are the least numbers p;, ... p; . We wish eliminate all

exponents in (7), namely
1

Piy - - - Piy,
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and 1
— + 25— 2,

Diy - - Piy,

except the exponent that correspond to p;, ...p;, = p1 = 2, namely

1
— —1. 8
S+ 8 ®)
If we choose ] ]
6: _+_+)\7 (9)
2 pa
where 0 < A < ¢ then (see (8) and (9))
1 1 1
—+p—-1=—4+A>—, (10)
2 Dn D
1 1
— 1< —, (11)
Diy -+ - Diy Pn

since p;, ...p;, = 3. On the other hand, if p;, ... p;, > 3 then (see (11))

1 1 1
— 4 28-2<———+B8-1< —, (12)

Piy - - - Piy, Piy - - - Piy, Pn
Besides if p;, ... p;, = p1 = 2 then

1 1

—+20-2< —, (13)
2 P

since p,, > 7. Consequently if [ satisfies (9) then equation (7) becomes (see (9), (10), (11), (12)

and (13))

1
N(x+ EAN™ A) = N(z) + 5:151%71H +o0 (a:z%n> )

That is, equation (2). The lemma is proved. U

Theorem 2.2. If1/6 < w < 1/7+ 1/6 is a fixed number then we have the following asymptotic
formula

1
N(z +27™) = N(z) + 596“ +o0 <xi> :
where p,, is the greatest prime that appear in the solutions (p,, \) to the equation

i%—)\:w (n>4)
Pn

Proof. 1f 1/6 < w < 1/7 + 1/6 then the equation

1
—+A=w (n>4)
Pn
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has a finite number of solutions (p,, \). Consequently equation (2) becomes
1 1 1
N(@+at*) = N(@) + 32% + o (a7 ),

where p,, is the greatest prime in this finite number of solutions. The theorem is proved.

Theorem 2.3. [f0 < w < 1/6 is a fixed number then we have the following asymptotic formula

1 1
N(x+z2%) = N(x) + =2 + o (2%),

2
forall) < a < w.
Proof. If 0 < w < 1/6 then the equation
1
—+A=w (n>4)
Pn

has infinite solutions (p,,, \), where n > ny. Consequently equation (2) becomes

1
N(z +22™) = N(z) + §x“’ + o (z%),

for all 0 < a < w. The theorem is proved. U

Theorem 2.4. If 0 < € < 1/7+1/6 is a fixed number we have the following asymptotic formula,
1 1
N(z+ 227 = N(x) + §x€ +o(x9). (14)

Proof. Equation (2) can be written in the more weak form,

1
N(z+ x%ﬂ%n“) = N(x)+ 5:1:17%“ +o0 (:zzz%n“> .

If we write ¢ = (1/p,) + A then 0 < € < 1/7 4 1/6. The theorem is proved. O

Theorem 2.5. If € > 0 then we have the following limit,

lim (N(z + 22+ — N(z)) = oo. (15)

T—00

. 1 e e
If the exponent is less than or equal to 5 this limit is false.

Proof. Limit (15) is an immediate consequence of equation (14). If the exponent is 1/2 then
we have the difference N (z + x%) — N(z). It is well-known (Theorem 3.1, [1]) that there exist
infinite x = n? such that N(n? + n) — N(n?) = 0. The theorem is proved. O
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