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Abstract: Let N(x) be the number of perfect powers that do not exceed x. In this note we obtain
asymptotic formulae for the difference N(x+xθ)−N(x), where 1/2 < θ < 2/3+1/7. We also
prove that if θ = 1/2 the difference N(x+ xθ)−N(x) is zero for infinite x arbitrarily large.
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1 Preliminary results

A natural number of the form mn where m is a positive integer and n ≥ 2 is called a perfect
power. The first few terms of the integer sequence of perfect powers are

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128 . . .

In this article, N(x) denotes the number of perfect powers that do not exceed x. That is, the
perfect power counting function.

Let pn be the n-th prime. Consequently we have,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, . . .

Jakimczuk [1] proved the following theorem.

Theorem 1.1. Let pn (n ≥ 2) be the n-th prime. The following asymptotic formula holds

N(x) =
n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1, pi1 ...pik<pn

x
1

pi1
···pik + g(x)x

1
pn , (1)
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where limx→∞ g(x) = 1. The expression 1 ≤ i1 < · · · < ik ≤ n − 1, pi1 . . . pik < pn indicates
that the sum is taken over the k-element subsets {i1, . . . , ik} of the set {1, 2, . . . , n− 1} such that
the inequality pi1 . . . pik < pn holds.

For example:
If n = 4 then Theorem 1.1 becomes,

N(x) =
√
x+ 3
√
x+ 5
√
x− 6
√
x+ g(x) 7

√
x,

where limx→∞ g(x) = 1.
If n = 5 then Theorem 1.1 becomes,

N(x) =
√
x+ 3
√
x+ 5
√
x− 6
√
x+ 7
√
x− 10

√
x+ g(x) 11

√
x,

where limx→∞ g(x) = 1.

The following lemma is an immediate consequence of the binomial Theorem.

Lemma 1.2. We have the following formula

(1 + x)1/α = 1 +
1

α
x+ fα(x)x

2,

where

lim
x→0

fα(x) =
1

2

1

α

(
1

α
− 1

)

2 Main results

Lemma 2.1. If n ≥ 4 (that is pn ≥ 7) and 0 < λ < 1
6

are fixed numbers we have the following
asymptotic formula,

N(x+ x
1
2
+ 1

pn
+λ) = N(x) +

1

2
x

1
pn

+λ + o
(
x

1
pn

)
. (2)

Proof. Let us consider the function g(x) (see (1)). Suppose that 0 < β < 1. We have (Lemma
1.2)

g(x+ xβ)(x+ xβ)
1
pn = g(x+ xβ)x

1
pn

(
1 +

xβ

x

) 1
pn

= g(x+ xβ)x
1
pn

(
1 +

1

pn

xβ

x
+ fpn

(
xβ

x

)(
xβ

x

)2
)

= g(x+ xβ)x
1
pn + o

(
x

1
pn

)
=
(
g(x+ xβ)− g(x)

)
x

1
pn + g(x)x

1
pn

+ o
(
x

1
pn

)
= g(x)x

1
pn + o

(
x

1
pn

)
, (3)

since limx→∞ g(x) = 1.
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On the other hand, if s ≥ 2 is a positive integer we have (Lemma 1.2)

(
x+ xβ

) 1
s = x

1
s

(
1 +

xβ

x

) 1
s

= x
1
s

(
1 +

1

s

xβ

x
+ fs

(
xβ

x

)(
xβ

x

)2
)

= x
1
s +

1

s
x

1
s
+β−1 + fs

(
xβ

x

)
x

1
s
+2β−2. (4)

Equation (1) gives

N(x+ xβ) =
n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1, pi1 ...pik<pn

(
x+ xβ

) 1
pi1

···pik

+ g(x+ xβ)
(
x+ xβ

) 1
pn . (5)

Substituting (3) and (4) into (5) and using (1) we find that

N(x+ xβ) =
n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1, pi1 ...pik<pn

(
x+ xβ

) 1
pi1

···pik

+ g(x+ xβ)
(
x+ xβ

) 1
pn =

n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1, pi1 ...pik<pn

(
x

1
pi1

···pik

+
1

pi1 . . . pik
x

1
pi1

...pik
+β−1

+ hpi1 ...pik (x)x
1

pi1
...pik

+2β−2
)
+ g(x)x

1
pn + o

(
x

1
pn

)
= N(x) +

n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1, pi1 ...pik<pn

(
1

pi1 . . . pik
x

1
pi1

...pik
+β−1

+ hpi1 ...pik (x)x
1

pi1
...pik

+2β−2
)
+ o

(
x

1
pn

)
. (6)

where

hpi1 ...pik (x) = fpi1 ...pik

(
xβ

x

)
That is,

N(x+ xβ) = N(x) +
n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n−1, pi1 ...pik<pn(
1

pi1 . . . pik
x

1
pi1

...pik
+β−1

+ hpi1 ...pik (x)x
1

pi1
...pik

+2β−2
)
+ o

(
x

1
pn

)
. (7)

Note that among the numbers pi1 . . . pik are the primes (when k = 1, see (7)) p1 = 2, p2 = 3, . . .,
pn−1. Consequently p1 = 2 and p2 = 3 are the least numbers pi1 . . . pik . We wish eliminate all
exponents in (7), namely

1

pi1 . . . pik
+ β − 1,
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and
1

pi1 . . . pik
+ 2β − 2,

except the exponent that correspond to pi1 . . . pik = p1 = 2, namely

1

2
+ β − 1. (8)

If we choose
β =

1

2
+

1

pn
+ λ, (9)

where 0 < λ < 1
6

then (see (8) and (9))

1

2
+ β − 1 =

1

pn
+ λ >

1

pn
, (10)

1

pi1 . . . pik
+ β − 1 <

1

pn
, (11)

since pi1 . . . pik ≥ 3. On the other hand, if pi1 . . . pik ≥ 3 then (see (11))

1

pi1 . . . pik
+ 2β − 2 <

1

pi1 . . . pik
+ β − 1 <

1

pn
, (12)

Besides if pi1 . . . pik = p1 = 2 then

1

2
+ 2β − 2 <

1

pn
, (13)

since pn ≥ 7. Consequently if β satisfies (9) then equation (7) becomes (see (9), (10), (11), (12)
and (13))

N(x+ x
1
2
+ 1

pn
+λ) = N(x) +

1

2
x

1
pn

+λ + o
(
x

1
pn

)
.

That is, equation (2). The lemma is proved. �

Theorem 2.2. If 1/6 < ω < 1/7 + 1/6 is a fixed number then we have the following asymptotic
formula

N(x+ x
1
2
+ω) = N(x) +

1

2
xω + o

(
x

1
pn

)
,

where pn is the greatest prime that appear in the solutions (pn, λ) to the equation

1

pn
+ λ = ω (n ≥ 4)

Proof. If 1/6 < ω < 1/7 + 1/6 then the equation

1

pn
+ λ = ω (n ≥ 4)
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has a finite number of solutions (pn, λ). Consequently equation (2) becomes

N(x+ x
1
2
+ω) = N(x) +

1

2
xω + o

(
x

1
pn

)
,

where pn is the greatest prime in this finite number of solutions. The theorem is proved.

Theorem 2.3. If 0 < ω ≤ 1/6 is a fixed number then we have the following asymptotic formula

N(x+ x
1
2
+ω) = N(x) +

1

2
xω + o (xα) ,

for all 0 < α < ω.

Proof. If 0 < ω ≤ 1/6 then the equation

1

pn
+ λ = ω (n ≥ 4)

has infinite solutions (pn, λ), where n ≥ n0. Consequently equation (2) becomes

N(x+ x
1
2
+ω) = N(x) +

1

2
xω + o (xα) ,

for all 0 < α < ω. The theorem is proved. �

Theorem 2.4. If 0 < ε < 1/7+1/6 is a fixed number we have the following asymptotic formula,

N(x+ x
1
2
+ε) = N(x) +

1

2
xε + o (xε) . (14)

Proof. Equation (2) can be written in the more weak form,

N(x+ x
1
2
+ 1

pn
+λ) = N(x) +

1

2
x

1
pn

+λ + o
(
x

1
pn

+λ
)
.

If we write ε = (1/pn) + λ then 0 < ε < 1/7 + 1/6. The theorem is proved. �

Theorem 2.5. If ε > 0 then we have the following limit,

lim
x→∞

(N(x+ x
1
2
+ε)−N(x)) =∞. (15)

If the exponent is less than or equal to 1
2

this limit is false.

Proof. Limit (15) is an immediate consequence of equation (14). If the exponent is 1/2 then
we have the difference N(x + x

1
2 ) − N(x). It is well-known (Theorem 3.1, [1]) that there exist

infinite x = n2 such that N(n2 + n)−N(n2) = 0. The theorem is proved. �
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