
Notes on Number Theory and Discrete Mathematics
ISSN 1310–5132
Vol. 20, 2014, No. 3, 1–28

Solutions with infinite support bases
of a functional equation arising

from multiplication of quantum integers

Lan Nguyen

Mathematics Department, University of Michigan-Ann Arbor
Ann Arbor, MI 48109, United States

e-mail: ltng@umich.edu

Abstract: It follows from our previous works and those of Nathanson that if P is a set of primes,
then the greater the cardinality of P , the less likely that there exists a sequence of polynomi-
als, satisfying the functional equation arising from multiplication of quantum integers studied by
Nathanson, which has P as its support base and which cannot be generated by quantum integers.
In this paper we analyze the set of roots of the polynomials involved leading to a direct construc-
tion of a polynomial solution Γ which has infinite support base P and which cannot be generated
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if the condition tΓ = 1 is removed.
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1 Introduction and Background

The aim of this paper is to study the the collections of primes P associated, in the sense which
is described in more details subsequently, to the solutions Γ of the functional equation discussed
in [2] arising from multiplication of quantum integers. We consider the case where the fields of
coefficients of Γ are of characteristic zero. From [2–4], we have seen that quantum integers serve
as a source of generators for the solutions Γ above. From [4], it is known that there is no nontrivial
sequence of polynomials, satisfying Functional Equation (2) with support base P containing all
primes, which cannot be generated by quantum integers in the sense of Theorem 2.1 of [4]. On
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the other hand, it is known, also from [4], that there exist sequences of polynomials satisfying
Functional Equation (2) with support base P of finite cardinality, which cannot be generated by
quantum integers. This paper investigates whether this phenomenon extends to the collection
of sequences of polynomials satisfying Functional Equation (2) with support bases P of infinite
cardinality.

First, let us give some basic background and main results from [2] as well as [4] concerning
quantum integers and the functional equation arising from multiplication of these integers, which
are relevant to this paper.

Definition 1.1. A quantum integer is a polynomial in q of the form

[n]q := qn−1 + . . .+ q + 1 =
qn − 1

q − 1
(1.1)

where n is any natural number.

From [1] and [2], multiplication operation for quantum integers, called quantum multiplica-
tion, is defined by the following rule:

[m]q ? [n]q := [mn]q = [m]q · [n]qm = [n]q · [m]qn (1.2)

where ? denotes quantum multiplication, multiplication operation for quantum integers, and .

denotes the usual multiplication of polynomials. It can be verified that Equation (1.2) is just the
q-series expansion of the sumset

{0, 1, . . . ,m− 1}+ {0,m, . . . , (n− 1)m} = {0, 1, . . . ,mn− 1}.

That leads Nathanson to study sequences of polynomials in q, Γ = {fn(q) | n = 1, . . . ,∞} with
coefficients contained in some field, satisfying the functional equations:

fm(q)fn(qm)
(1)
= fn(q)fm(qn)

(2)
= fmn(q) (1.3)

for all m,n ∈ N. As in [2], we refer to the first equality in the above functional equation as
Functional Equation (1) and the second equality as Functional Equation (2).

Remark 1.2. A sequence of polynomials which satisfies Functional Equation (2) automatically
satisfies Functional Equation (1) but not vice versa ([2]).

Let Γ = {fn(q)} be a sequence of polynomials satisfying Functional Equation (2). The set
of integers n in N where fn(q) 6= 0 is called the support of Γ and denoted by supp{Γ}. If P
is a set of rational primes and AP consists of 1 and all natural numbers such that all their prime
factors come from P , thenAP is a multiplicative semigroup which is called a prime multiplicative
semigroup associated to P . From [2], the support of Γ is a multiplicative prime sub-semigroup
of N.

Theorem 1.3. ([2]) Let Γ = {fn(q)} be a sequence of polynomials satisfying Functional Equa-
tion (2). Then supp{Γ} is of the form AP for some set of primes P , and Γ is completely deter-
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mined by the collection of polynomials:

{fp(q) | p ∈ P}.

As a result, studying any sequence Γ satisfying Functional Equation (2) reduces to studying
the sub-collection of polynomials with prime indexes p in its support base P .

Definition 1.4. Let P be the collection of primes associated to the support AP , in the sense of
Theorem 1.3, of a sequence of polynomials Γ satisfying Functional Equation (2). Then P is
called the support base of Γ.

In the reverse direction, if P is a set of primes in N then there is at least one sequence Γ

satisfying Functional Equation (2) with supp{Γ} = AP . One such sequence can be defined as
the set of polynomials:

fm(q) =

{
[m]q if m ∈ AP ;
0 otherwise.

Note that the coefficients of fm(q) are properly contained in Q.
We say that a sequence Γ is nonzero if supp{Γ} 6= ∅. If Γ satisfies Functional Equation (2),

then Γ is nonzero if and only if f1(q) = 1 ([2]).
The degree of each polynomial fn(q) ∈ Γ is denoted by deg(fn(q)). From [1, 2], it is known

that there exists a rational number tΓ such that:

deg(fn(q)) = tΓ(n− 1)

for all n in supp{Γ}. This number tΓ is not necessarily an integer (see [2] or [4] for an example
of such a sequence). We discussed in [4] that tΓ can only be non integral when the support base
P of Γ is of the form P = {p} for some prime p.

Let P be a set of primes. The next result provides a general way to construct a solution to the
Functional Equation (2) with support base P :

Theorem 1.5. ([2]) Let P be a set of primes. Let Γ′ = {f ′p(q) | p ∈ P} be a collection of
polynomials such that:

f ′p1(q) · f
′
p2

(qp1) = f ′p2(q) · f
′
p1

(qp2)

for all pi ∈ P (i.e, satisfying Functional Equation (1)). Then there exists a unique sequence
Γ = {fn(q) | n ∈ N} of polynomials satisfying Functional Equation (2) such that fp(q) = f ′p(q)

for all primes p ∈ P .

Theorem 1.6. ([2]) Let Γ = {fn(q) | n ∈ N} be a nonzero sequence of polynomials satisfying
Functional Equation (2) with support AP for some set of primes P . Then there exists a unique
completely multiplicative arithmetic function ψ(n), a rational number t, and a unique sequence
Σ = {gn(q)} satisfying (2) with the same support AP such that:

fn(q) = ψ(n)qt(n−1)gn(q)
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where gn(q) is a monic polynomial with gn(0) 6= 0 for all n ∈ AP .

As a result, in the rest of this paper, unless otherwise stated, all sequences of polynomials
which we consider are normalized so that each polynomial is monic and having nonzero constant
terms.

For a sequence Γ of polynomials satisfying Functional Equation (2), the smallest field K

which contains all the coefficients of all the polynomials in Γ is called the Field of Coefficients
of Γ. We are only concerned with sequences of polynomials whose fields of coefficients K are of
characteristic zero. Unless stated otherwise, we always view Γ as a sequence of polynomials with
coefficients in a fixed separable closure K of K which is embedded in C via a fixed embedding
ι : K ↪→ C. Thus every element f(q) of Γ can be viewed as a polynomial in C[q]. We frequently
view polynomials f(q)’s in Γ as elements of the ring C[q] through out this paper. Thus whenever
that is necessary, it is implicitly assumed.

Definition 1.7. Let Γ = {fn(q) | n ∈ N} be a sequence of polynomials satisfying Functional
Equation (2). Then Γ is said to be generated by quantum integers if there exist ordered pairs of
integers {ui, ti}i with i = 1, . . . , s such that tΓ =

∑
i=1,...,s uiti and

fn(q) =
s∏
i=1

([n]qui )
ti

for all n in N.

2 Main results

From part (2) of Theorem 1.9, we know that there is no sequence Γ of polynomials satisfying
Functional Equation (2) with support base P consisting of all primes and field of coefficients
of characteristic zero strictly containing Q. Therefore, there is no sequence Γ of polynomials
satisfying Functional Equation (2) with support base P consisting of all primes which cannot be
generated by quantum integers by part (1) of Theorem 1.9. On the other hand, it can be deduced
from Key Proposition 1 of [4] that there is a finite set of primes P , namely P = {p, r} for certain
primes p and r, such that there exists a sequence of polynomial Γ satisfying Functional equation
(2) with field of coefficients of characteristic zero strictly containing Q and support base P .

In the opposite direction, suppose that a set of primes P is given. We are interested in the
question whether or not there exists a sequence of polynomials satisfying Functional Equation
(2) with field of coefficients of characteristic zero and support base P . In the case where the
field of coefficients is Q, there exists at least one sequence of polynomials satisfying Functional
Equation (2) having P as its support base, namely

Γ := {fn(q) = [n]q | n ∈ AP}.

This sequence is in fact the unique sequence of monic polynomials satisfying Functional Equation
(2) with support base P such that deg{fn(q)} = n− 1, or equivalently tΓ = 1, if P ⊇ {2, p} for
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some odd prime p. However, except in the case where |P | = 1 ([4]), there is no known criterion
for determining whether there exists a sequence of polynomials satisfying Functional Equation
(2) with fields of coefficients strictly containing Q with a given set of prime P as its support
base. Moreover, in the case where P has infinite cardinality, it is not even known if there exists
a sequence of polynomials satisfying Functional Equation (2) with support base P and field of
coefficients strictly containing Q. It can be seen from [2] and [4] that the cardinality of the set
of primes P has a direct impact on the existence of sequences Γ of polynomials, with field of
coefficients of characteristic zero strictly containing Q, satisfying Functional Equation (2) with
support base P . In particular, Theorems 2.1 and 2.2 of [7] show that if r is a prime and P is the
support base of a sequence of polynomials

Γ = {fn(q) | n ∈ N}

satisfying Functional Equation (2) with field of coefficients strictly containing Q, then there exists
a sequence of polynomials

Γr = {gn(q) | n ∈ N}

satisfying Functional Equation (2) with support base P ∪ {r} such that

gp(q) = fp(q)

for all p in P if and only if r satisfies certain conditions imposed by the sequence Γ and P . As
a result, the greater the cardinality of the set of primes P , the less likely that there is a sequence
of polynomials satisfying Functional Equation (2) with support base P and field of coefficients
strictly containing Q. In other word, if a set of primes P has large cardinality and if Γ is a se-
quence of polynomial satisfying Functional Equation (2) with support base P , then it is more
likely that Γ is generated by quantum integers. In this paper, we show that, in spite of the restric-
tion described by Theorems 2.1 and 2.2 of [7], there exist sequences of polynomials satisfying
Functional Equation (2) with field of coefficients strictly containing Q and having infinite support
base P . The existence of these sequences of polynomials demonstrates the limitation of quantum
integers as generators of the solution of these functional equations.

Our main results in this paper can be summarized as follows:

Theorem 2.1. Let P be a set of primes. Suppose that one of the following conditions holds:

1. P = {p} or {p, r} for some primes p and r.

2. 4 divides p− 1 for all odd primes p in P .

3. There exists an odd prime r such that r divides p− 1 for all p in P .

4. There exists an odd prime r such that r divides p− 1 for all odd primes p in P − {r}.

Then there exists a sequence Γ = {fn(q) | n ∈ N} of polynomials satisfying Functional Equation
(2) with field of coefficients strictly containing Q and support base P .
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Corollary 2.2. There exists a sequence Γ of polynomials satisfying Functional Equation (2) with
field of coefficients strictly containing Q and support base of infinite cardinality. In other word,
there exists at least one sequence of polynomials satisfying Functional Equation (2) with infinite
support base, which cannot be generated by quantum integers.

Remark 2.3.

• Part (1) of Theorem 2.1 demonstrates in particular that there exists a sequence of poly-
nomials, satisfying Functional Equation (2) with support base P = {2, p} for some odd
prime p, which cannot be generated by quantum integers in the sense defined earlier. This
shows that the condition tΓ = 1 in Theorem 9 of [2] is necessary for fields of coefficients
of characteristic zero.

• Corollary 2.2 establishes the existence of a sequence of polynomials satisfying Functional
Equation (2) with support base of infinite cardinality, which cannot be generated by quan-
tum integers. This also proves the necessity of Proposition 3.10 of [2].

• Theorem 2.1 lays the foundation for [6] which provides the set of necessary and sufficient
conditions for the existence of a sequence of polynomials satisfy Functional Equation (2)

with support base P which cannot be generated by quantum integers.

3 Proofs of Main results

Proof. (Proof of Theorem 2.1)
(1) If P = {p} for some prime p, then the existence of a sequence of polynomials Γ satisfying

Functional Equation (2), with field of coefficients strictly containing Q, is guaranteed by [1].
After a normalization using Theorem 1.6, such sequences have the form

Γ = {fpn(q) | n ∈ N}

where:

• fp0(q) = 1.

• fpn(q) = fp(q)fpn−1(q2) where fp(q) is a monic polynomial with nonzero constant term
and coefficients not properly contained in Q.

It follows immediately from the definition of fp(q) and Γ that the field of coefficients of Γ strictly
contains Q. As a result, Γ cannot be generated by quantum integers in the sense of Definition 1.7.

Suppose P = {p, r} for some prime p and r. First let us give some terminology involved in
the construction of our sequence.

Let u be any positive integer and p be any prime number. The polynomial denoted by Pu,p(q)
or Pup(q) is the irreducible cyclotomic polynomial in Q[q] whose roots are all primitive up-roots
of unity. Pu,p(q) is sometimes denoted by Pup(q) or Pv(q) where v = up. For a primitive n-root
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of unity α in C, which can be written in the form α = e
2πiw
n for some primitive residue class w

modulo n, we always identify α, via the Chinese Remainder Theorem, with the tuples (ui)i where∏
i(pi)

mi is the prime factorization of n and ui ∈ (Z/pmii Z)∗ for each i such that

ui ≡ w(pmii ).

We also need to recall from [4, 5] the following definitions since they are used frequently in
the subsequent part of our work.

Definition 3.1. 1) Let Pu,p(q) and Pu,r(q) be the cyclotomic polynomials with coefficients in Q
of orders up and ur respectively. Let Fu,p(q) and Fu,r(q) be two polynomials dividing Pu,p(q) and
Pu,r(q) respectively. If Fu,p(q) and Fu,r(q) satisfy the condition that for each primitive residue
class w modulo u, all the roots of Pu,p(q) represented by the collection of tuples {(γp, (wpj)j) |
γp = 1, . . . , p− 1} if p does not divide u (resp. by the collection {(wp + t(pl), (wpj)j,pj 6=p) | t =

0, . . . , p−1} if pl|u for some positive integer l ≥ 1) are roots Fu,p(q) if and only if all the roots of
Pu,r(q) represented by the collection {γr, (wpj)j | γr = 1, . . . , r− 1} if r does not divide u (resp.
by the collection {wr + s(rh), (wpj)j,pj 6=r | s = 0, . . . , r − 1} if rh|u for some positive integer
h ≥ 1) are roots Fu,r(q), then we will say that Fu,p(q) and Fu,r(q) are compatible. For example,
Pu,p(q) and Pu,r(q) are compatible for any positive integer u, primes p and r, a fact which is
proven in [3] for the case where pr does not divide u as well as when either p or r dividing u.

2) Two polynomials fu,p(q) and fu,r(q) are said to be super-compatible if fu,p(q) =

=
∏

i(F
(i)
u,p(q))ni and fu,r(q) =

∏
i(F

(i)
u,r(q))ni where F (i)

u,p(q) and F (i)
u,r(q) are polynomials which

are compatible for all i. In particular, Pu,p(q)n and Pu,r(q)n are super-compatible for any nonneg-
ative integer n. Thus compatibility is a special case of super-compatibility.

Remark 3.2. To understand the rationality of this definition, the readers can consult [4, 5]. The
polynomials F (i)

u,2(q)’s in the definition of super-compatible might not unique for any i, where 2

denotes either p or r.

Let p and r be any distinct primes in the support of Γ. Define fup,p(q) to be the factor of
fp(q) such that its roots consist of all the roots of fp(q) with multiplicities which are primitive
pup-roots of unity. Then fp(q) =

∏
up,j>up,j+1

fup,j ,p(q) in the ring C[q]. Similarly, fr(q) =∏
ur,i>ur,i+1

fur,i,r(q). We call j (resp. i) or interchangeably up,j (resp. ur,i) the j-level (resp. i-
level) or up,j-level (resp. ur,i-level) of fp(q) (resp. fr(q)) if fup,j(q) (resp. fur,i(q)) is a nontrivial
factor of fp(q) (resp. fr(q)). Define V := {vp,r,k | vp,r,k > vp,r,k+1} := {up,j}j ∪{ur,i}i. We refer
to k or vp,r,k as the k-bi-level with respect to p and r or the vp,r,k-bi-level of fp(q) and fr(q). Note
that level i of fp(q) or fr(q) is not necessarily equal to the bi-level i of fp(q) and fr(q). Using
V and these product decompositions, we write Functional Equation (1) with respect to fp(q) and
fr(q) as:

fvp,r,1,p(q)
svp,1fvp,r,1,r(q

p)svr,1
(1)←→ fvp,r,1,r(q)

svr,1fvp,r,1,p(q
r)svp,1

. . . . . . . . .

fvp,r,k,p(q)
svp,kfvp,r,k,r(q

p)svr,k
(k)←→ fvp,r,k,r(q)

svr,kfvp,r,k,p(q
r)svp,k

. . . . . . . . .

fp(q)fr(q
p) = fr(q)fp(q

r)
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where:

• sp,k = 1 if fvp,r,k,p(q) nontrivially divides fp(q) (i.e., fvp,r,k,p(q) = fui,p(q) for some ui) and
0 otherwise.

• sr,k = 1 if fvp,r,k,r(q) nontrivially divides fr(q) (i.e., fvp,r,k,r(q) = fui,r(q) for some ui) and
0 otherwise.

•
∏

k fvp,r,k,p(q)
svp,kfvp,r,k(q

p)svr,k = fp(q)fr(q
p).

•
∏

j fvp,r,k,r(q)
svr,kfvp,r,k(q

r)svp,j = fr(q)fp(q
r).

• The symbol
(j)←→ indicates the functional equation (1) at the bi-level j (note that the poly-

nomial expressions on the left hand side and the right hand side of←→ at each bi-level are
not necessarily equal).

Note that for every bi-level k where vp,r,k appears in the equation above, either sp,k = 1 or
sr,k = 1.

The above version of Functional Equation (1) is called the Expanded Functional Equation
(1) with respect to p and r, denoted by EFE(1). The EFE(1) above is said to be in reduced form
if at each bi-level k where pr does not divide vp,r,k, the line

fvp,r,k,p(q)
svp,kfvp,r,k,r(q

p)svr,k
(k)←→ fvp,r,k,r(q)

svr,kfvp,r,k,p(q
r)svp,k

in EFE (1) is replaced by

(i) fvp,r,k,r(q
p)svr,k

(k)←→ fvp,r,k,r(q)
svr,k

fvp,r,k,p(qr)
svp,k

fvp,r,k,p(q)
svp,k

if (r, vp,r,k) = 1.

(ii) fvp,r,k,p(q)
svp,k

fvp,r,k,r(q
p)
svr,k

fvp,r,k,r(q)
svr,k

(k)←→ fvp,r,k,p(q
r)svp,k if (p, vp,r,k) = 1, or

(iii)
fvp,r,k,p(qr)

svp,k

fvp,r,k,p(q)
svp,k

(k)←→ fvp,r,k,r(q
p)
svr,k

fvp,r,k,r(q)
svr,k

if (pr, vp,r,k) = 1.

(iv) The line fp(q)fr(qp) = fr(q)fp(q
r) is replaced by Qp,r(q) = Qp,r(q) where Qp,r(q) is the

product of all expressions of the left hand columns (or the right hand column) after (i), (ii), (iii)
have taken place, i.e.,

Qp,r(q) =
fp(q)fr(q

p)∏
i fvp,r,i,r(q)

sr,i(1−δp,i)fvp,r,i,p(q)
sp,i(1−δr,i)

=
fr(q)fp(q

r)∏
i fvp,r,i,r(q)

sr,i(1−δp,i)fvp,r,i,p(q)
sp,i(1−δr,i)

.

Remark 3.3. (1) An EFE(1) with respect to p and r can be transformed into its reduced form by di-
viding both polynomials fp(q)fr(qp) and fr(q)fp(qr) by

∏
i fvp,r,i,r(q)

sr,i(1−δp,i)fvp,r,i,p(q)
sp,i(1−δr,i);

(2) The product of all the rational expressions in the left hand column and the product of those in
the right hand column of the reduced form of the EFE(1) are equal, and thus can be denoted by
the same polynomial Qp,r(q); (3) For each line (i), the product of all expressions on both sides
of←→ remains equal after (i), (ii) or (iii) have taken place. It is shown in [4] that all the rational
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expressions above are actually polynomials when they occur, and that for each of these rational
expressions, its roots are primitive roots of unity of the same order.

Definition 3.4. Let 2 denote either p or r and4 denote the other. The polynomial fvp,r,m,2(q) 6= 1

is said to be directly related to the polynomial fvp,r,n,4(q) 6= 1 for some n 6= m if fvp,r,m,2(q) =

fvp,r,n,4(q) and

fvp,r,m,2(q)
fvp,r,l,4(q2)s4,l

fvp,r,l,4(q)s4,l(1−δ2,l)
6= fvp,r,n,4(q)

fvp,r,l,2(q4)s2,l

fvp,r,l,2(q4)s2,l(1−δ4,l)

for for all l > m, n such that vp,r,m2 = vp,r,l42. The polynomial fvp,r,m,2(q) 6= 1 is said to
semi-directly related to fvp,r,n,2(q) 6= 1 (or vice versa) if

fvp,r,m,2(q)
fvp,r,n,4(q2)s4,n

fvp,r,n,4(q)s4,n(1−δ2,n)
=

fvp,r,n,2(q4)

fvp,r,n,2(q4)(1−δ4,n)
.

Suppose either fvp,r,m,2(q) or fvp,r,n,4(q) is nontrivial such that vp,r,m2 = vp,r,n4 and

fvp,r,m,2(q)
fvp,r,l,4(q2)s4,l

fvp,r,l,4(q)s4,l(1−δ2,l)
= fvp,r,n,4(q)

fvp,r,l,2(q4)s2,l

fvp,r,l,2(q4)s2,l(1−δ4,l)

for some bi-levels l > n,m. Then fvp,r,m,2(q) is said to be indirectly related to the ordered pair
of polynomials (fvp,r,n,4(q), fvp,r,l,2(q)) (or fvp,r,n,4(q) is indirectly related to the ordered pair
(fvp,r,m,2(q), fvp,r,l,2(q))).

If two (or three in the case of indirect relation) polynomials satisfy one of the related relations
above, we refer to the levels, namely vp,r,m and vp,r,n (and vp,r,l if applicable), of the polynomials
involved as the related levels or as being related. Similarly, we also refer to these polynomials
or the lines of EFE(1) containing the polynomials involved in such relations as being related
polynomials or related lines respectively.

Now, let us construct a sequence of polynomials satisfying Functional Equation (2) with field
of coefficients strictly containing Q and with P as its support base. Let P = {p, r} and suppose
that p < r. Let us suppose that there exists a sequence of polynomials Γ satisfying Functional
Equation (2) with support containing p and r and field of coefficients strictly containing Q. Then
elements of Γ cannot be generated by quantum integers by Theorem 1.9. Let fp(q) and fr(q) be
the polynomials in Γ corresponding to p and r. Let us suppose further that 1 is the highest power
of p and r dividing vp,r,1 where vp,r,1 is the integer appearing in line (1) of EFE(1) with respect to
p and r.

Proposition 3.5. (Key Proposition 1)
The reduced form of EFE(1) with respect to p and r has the form

fvp,r,1,p(q)fvp,r,1,r(q
p)

(1)↔ fvp,r,1,r(q)fvp,r,1,p(q
r)

. . . . . . . . .
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fvp,r,d1 ,p(q)
sp,d1δr,d1

fvp,r,d1 ,r
(qp)

sr,d1

fvp,r,d1 ,r
(q)

sr,d1
(1−δp,d1 )

(d1)↔ fvp,r,d1 ,r(q)
sr,d1δp,d1

fvp,r,d1 ,p
(qr)

sp,d1

fvp,r,d1 ,p
(q)

sp,d1
(1−δr,d1 )

. . . . . . . . .

f vp,r,1
p

,p(q)
sp,k1

f vp,r,1
p ,r

(qp)

f vp,r,1
p ,r

(q)

(k1)↔ f vp,r,1
p

,p(q
r)sp,k1

. . . . . . . . .

fvp,r,d2 ,p(q)
sp,dr δr,d2

fvp,r,d2 ,r
(qp)

sr,d2

fvp,r,d2 ,r
(q)

sr,d2
(1−δp,d2 )

(d2)↔ fvp,r,d2 ,r(q)
sr,d2δp,d2

fvp,r,d2 ,p
(qr)

sp,d2

fvp,r,d2 ,p
(q)

sp,d2
(1−δr,d2 )

. . . . . . . . .

f vp,r,1p
r

,r(q
p)sr,k2

(k2)↔ f vp,r,1p
r

,r(q)
sr,k2

f vp,r,1p
r ,p

(qr)
sp,k2

f vp,r,1p
r ,p

(q)
sp,k2

. . . . . . . . .

fvp,r,d3 ,p(q)
sp,d3δr,d3

fvp,r,d3 ,r
(qp)

sr,d3

fvp,r,d3 ,r
(q)

sr,d3
(1−δp,d3 )

(d3)↔ fvp,r,d3 ,r(q)
sr,d3δp,d3

fvp,r,d3 ,p
(qr)

sp,d3

fvp,r,d3 ,p
(q)

sp,d3
(1−δr,d3 )

. . . . . . . . .

f vp,r,1
r

,r(q
p)sr,k3

(k3)↔ f vp,r,1
r

,r(q)
sr,k3

f vp,r,1
r ,p

(qr)
sp,k3

f vp,r,1
r ,p

(q)
sp,k3

. . . . . . . . .

fvp,r,d4 ,p(q)
sp,d4δr,d4

fvp,r,d4 ,r
(qp)

sr,d4

fvp,r,d4 ,r
(q)

sr,d4
(1−δp,d4 )

(d4)↔ fvp,r,d4 ,r(q)
sr,d4δp,d4

fvp,r,d4 ,p
(qr)

sp,d4

fvp,r,d4 ,p
(q)

sp,d4
(1−δr,d4 )

. . . . . . . . .
f vp,r,1

rp ,r
(qp)

sr,k4

f vp,r,1
rp ,r

(q)
sr,k4

(k4)↔
f vp,r,1

rp ,p
(qr)

sp,k4

f vp,r,1
rp ,p

(q)
sp,k4

. . . . . . . . .

fvp,r,d5 ,p(q)
sp,d5δr,d5

fvp,r,d5 ,r
(qp)

sr,d5

fvp,r,d5 ,r
(q)

sr,d5
(1−δp,d5 )

(d5)↔ fvp,r,d5 ,r(q)
sr,d5δp,d5

fvp,r,d5 ,p
(qr)

sp,d5

fvp,r,d5 ,p
(q)

sp,d5
(1−δr,d5 )

. . . . . . . . .

Qp,r(q) = Qp,r(q)

where:

• d1 (resp. k1) is any bi-level of EFE(1) with respect to p and r such that vp,r,1 > vp,r,di >
vp,r,1
p

(resp. vp,r,k1 = vp,r,1
p

).

• d2 (resp. k2) is any bi-level of EFE(1) with respect to p and r such that vp,r,1
p

> vp,r,d2 >
vp,r,1p

r
(resp. vp,r,k2 = vp,r,1p

r
).

• d3 (resp. k3) is any bi-level of EFE(1) with respect to p and r such that vp,r,1p

r
> vp,r,d3 >

vp,r,1
r

(resp. vp,r,k3 = vp,r,1
r

).

• d4 (resp. k4) is any bi-level of EFE(1) with respect to p and r such that vp,r,1
r

> vp,r,d3 >
vp,r,1
pr

(resp. vp,r,k4 = vp,r,1
pr

).

• d5 is any bi-level of EFE(1) with respect to p and r such that vp,r,1
pr

> vp,r,d5 .

• All the rational expressions above are polynomials.

10



Proof. First of all, all the rational expressions appearing in EFE(1) with respect to p and r are
polynomials by Key Proposition 1′ of [4]. Secondly, there is nothing to prove about the forms of
lines (d1), (d2), (d3), (d4) and (d5) since they are just the general form of any line in EFE(1) with
respect to any two primes, namely p and r in this case. We only need to prove that lines (1), (k1),
(k2), (k3) and (k4) take the forms as above.

Since the field of coefficients of Γ strictly contains Q by assumption, it can be verified that
fp(q) and fr(q) are nontrivial polynomials ([4]). As a result, fvp,r,1,p(q) and fvp,r,1,r(q) are non-
trivial, or equivalently sp,1 = sr,1 = 1. In addition, δr,1 = δp,1 = 1 since both p and r divide vp,r,1
by assumption. Therefore, line (1) takes on such form.

Since p < r by assumption, it can be verified that fvp,r,1,r(q) must be semi-directly related to
fvp,r,i,r(q) for some bi-level i, i.e.,

fvp,r,i,r(q
p)sr,i

fvp,r,i,r(q)
sr,i (1−δp,i)

= fvp,r,1,r(q)
fvp,r,i,p(q

r)sp,i

fvp,r,i,p(q)
sp,i(1−δr,i)

.

Hence vp,r,i = vp,r,1
p

and thus δp,i = 0 since p is the highest power of p dividing vp,r,1 by assump-

tion. Moreover, fvp,r,1,r(q) 6= 1 implies that
fvp,r,i,r(q

p)sr,i

fvp,r,i,r(q)
sr,i (1−δp,i )

6= 1. Hence sr,i = 1. Therefore

fvp,r,i,r(q
p)sr,i

fvp,r,i,r(q)
sr,i (1−δp,i)

=
f vp,r,1

p
,r(q

p)

f vp,r,1
p

,r(q)
.

On the other hand, r divides vp,r,1 and thus vp,r,1
p

. Hence δr,i = 1. Therefore, line (k1) takes the
form above.

As p < r, it can be verified that there are three possibilities:
(a) fvp,r,1,p(q) is directly related to fvp,r,i,r(q) for some bi-level i, i.e.,

fvp,r,1,p(q) = fvp,r,i,r(q)
sr,i

for some bi-level i.
(b) fvp,r,1,p(q) is semi-directly related to fvp,r,j ,p(q), i.e.,

fvp,r,1,p(q)
fvp,r,j ,r(q

p)sr,j

fvp,r,j ,r(q)
sr,j(1−δp,j)

=
fvp,r,j ,p(q

r)sp,j

fvp,r,j ,p(q)
sp,j(1−δr,j)

.

(c) fvp,r,1,p(q) is indirectly related to the ordered pair (fvp,r,i,r(q), fvp,r,j ,p(q)) of polynomials,
i.e.,

fvp,r,1,p(q)
fvp,r,j ,r(q

p)sr,j

fvp,r,j ,r(q)
sr,j(1−δp,j)

= fvp,r,i,r(q)
sr,l

fvp,r,j ,p(q
r)sp,j

fvp,r,j ,p(q)
sp,j(1−δr,j)

.

It can be verified from (a), (b) and (c) that vp,r,i = vp,r,1p

r
and vp,r,j = vp,r,1

r
. Moreover, it can be

verified that r does not divide vp,r,1p

r
and vp,r,1

r
while p divide vp,r,1p

r
and vp,r,1

r
. As a result,

δr,k2 = 0 = δr,k3 ,

δp,k2 = 1 = δp,k3 .

Therefore, lines (k2) and (k3) have such forms.
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Again since p < r, it can be verified that there are three possibilities:
(a) f vp,r,1

p
,p(q)

sp,k1 is directly related to fvp,r,i,r(q)
sr,i for some bi-level i, i.e.,

f vp,r,1
p

,p(q)
sp,k1 = fvp,r,i,r(q)

sr,i .

(b) f vp,r,1
p

,p(q)
sp,k1 is semi-directly related to fvp,r,j ,p(q)

sp,j , i.e.,

f vp,r,1
p

,p(q)
sp,k1

fvp,r,j ,r(q
p)sr,j

fvp,r,j ,r(q)
sr,j(1−δp,j)

=
fvp,r,j ,p(q

r)sp,j

fvp,r,j ,p(q)
sp,j(1−δr,j)

(c) f vp,r,1
p

,p(q)
sp,k1 is indirectly related to the ordered pair (fvp,r,i,r(q)

sr,i , fvp,r,j ,p(q)
sp,j), i.e.,

f vp,r,1
p

,p(q)
sp,k1

fvp,r,j ,r(q
p)sr,j

fvp,r,j ,r(q)
sr,j(1−δp,j)

= fvp,r,i,r(q)
sp,l

fvp,r,j ,p(q
r)sp,j

fvp,r,j ,p(q)
sp,j(1−δr,j)

.

It can be verified from (a), (b) and (c), vp,r,i = vp,r,1
r

and vp,r,j = vp,r,1
pr

. Also, since p does not
divide vp,r,1

pr
while r does not divide vp,r,1

pr
,

δp,k4 = 0 = δr,k4 .

As a result, line (k4) takes on such form. Therefore, the result follows.

Let us construct a sequence, also denoted by Γ, satisfying Functional Equation (2) with field
of coefficients strictly containing Q and P = {p, r | p < r} as its support base, using the Key
Proposition 1 above. This construction is partitioned into several steps.

Step 1: Define
vp,r,1 := u = pr.

Then u > 2 and 1 is the highest power of p and r dividing vp,r,1 as required in the hypothesis of
Key Proposition 1. Since p < r, r is an odd prime. Let Ap be a (Z/pZ)∗ and Ar is a nonempty
proper subset of (Z/rZ)∗. Then

Ap ×Ar := Apr < (Z/pZ)∗ × (Z/rZ)∗ ∼= (Z/prZ)∗.

Step 2: Extract lines (1), (k1), (k2), (k3) and (k4), i.e., those lines which are known to take on
some particular forms and which we call the optimal lines, from EFE(1) with respect to p and r
in Key Proposition 1 above:

fvp,r,1,p(q)fvp,r,1,r(q
p)

(1)↔ fvp,r,1,r(q)fvp,r,1,p(q
r)

. . . . . . . . .

f vp,r,1
p

,p(q)
sp,k1

f vp,r,1
p ,r

(qp)

f vp,r,1
p ,r

(q)

(k1)↔ f vp,r,1
p

,p(q
r)sp,k1

. . . . . . . . .
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f vp,r,1p
r

,r(q
p)sr,k2

(k2)↔ f vp,r,1p
r

,r(q)
sr,k2

f vp,r,1p
r ,p

(qr)
sp,k2

f vp,r,1p
r ,p

(q)
sp,k2

. . . . . . . . .

f vp,r,1
r

,r(q
p)sr,k3

(k3)↔ f vp,r,1
r

,r(q)
sr,k3

f vp,r,1
r ,p

(qr)
sp,k3

f vp,r,1
r ,p

(q)
sp,k3

. . . . . . . . .
f vp,r,1

rp ,r
(qp)

sr,k4

f vp,r,1
rp ,r

(q)
sr,k4

(k4)↔
f vp,r,1

rp ,p
(qr)

sp,k4

f vp,r,1
rp ,p

(q)
sp,k4

. . . . . . . . .

For each pj ∈ P , let fu,pj(q) be a monic polynomial with nonzero constant term whose roots
are primitive upj-roots of unity represented, via the Chinese Remainder Theorem (see the proof
of Key Proposition 1′ of [4] for more details), by collection of tuples:

A(pj) := {(wpj + t(pj), wpi) | 0 ≤ t ≤ pj − 1, pi ∈ P − {pj}, wpi ∈ Api , wpj ∈ Apj}.

Remark 3.6. Recall from [2] and [4] that when we use the phrase the collection of roots of a
certain polynomial is represented by a collection of tuples, we mean there is a one to one corre-
spondence between the collection of roots of that polynomial and the elements of such collection
of tuples, via Chinese Remainder Theorem.

Then fu,pn(q) and fu,pm(q) are super-compatible for any pair of primes pn and pm, and their
coefficients are not properly contained in Q. In particular, fu,p(q) and fu,r(q) are super-compatible
and are not in Q[q]. Moreover, it can be verified using super-compatibility (as in Key Proposition
1 and 1′ of [4]) that

fu,r(q
p) = fu,p(q

r).

Step 3: (a) Let f vp,r,1
p

,r(q) = P vp,r,1
p

,r(q) where P vp,r,1
p

,r(q) is the cyclotomic polynomial with

coefficients in Q and of order vp,r,1
p
r. Hence

f vp,r,1
p

,r(q
p)

f vp,r,1
p

,r(q)
= P vp,r,1

p
p,r(q) = Pvp,r,1,r(q)

where P vp,r,1
p

p,r(q) is the cyclotomic polynomial with coefficients in Q and of order vp,r,1
p
pr =

vp,r,1r.
Let f vp,r,1

r
,p(q) = P vp,r,1

r
,p(q) where P vp,r,1

r
,p(q) is the cyclotomic polynomial with coefficients

in Q and of order vp,r,1
r
p. Thus

f vp,r,1
r

,p(q
r)

f vp,r,1
r

,p(q)
= P vp,r,1

r
r,p(q) = Pvp,r,1,p(q)

where P vp,r,1
r

r,p(q) is the cyclotomic polynomial with coefficients in Q and of order vp,r,1
r
rp =

vp,r,1p.
Let f vp,r,1

rp
,r(q) = P vp,r,1

rp
,r(q) and f vp,r,1

rp
,p(q) = P vp,r,1

rp
,p(q), where P vp,r,1

rp
,r(q) (resp. P vp,r,1

rp
,p(q))
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is the cyclotomic polynomial with coefficients in Q of order vp,r,1
rp

r = vp,r,1
p

(resp. vp,r,1
rp

p = vp,r,1
r

).
Therefor

e

f vp,r,1
rp

,r(q
p)

f vp,r,1
rp

,r(q)
= P vp,r,1

rp
p,r(q) = P vp,r,1

r
,r(q) = P vp,r,1

p
,p(q) = P vp,r,1

rp
r,p(q) =

f vp,r,1
rp

,p(q
r)

f vp,r,1
rp

,p(q)

where
P vp,r,1

rp
p,r(q) = P vp,r,1

r
,r(q) = P vp,r,1

p
,p(q) = P vp,r,1

rp
r,p(q)

is the cyclotomic polynomial with coefficients in Q of order vp,r,1.
(b) Choose sp,i’s and sr,i’s appearing in the optimal lines above.

As
f vp,r,1

p ,r
(qp)

f vp,r,1
p ,r

(q)
= Pvp,r,1,r(q) ∈ Q[q] in (a), it follows that the only choice possible for sp,k1 is

sp,k1 = 1 since

Pvp,r,1,r(q) =
f vp,r,1

p
,r(q

p)

f vp,r,1
p

,r(q)
= fvp,r,1,r(q)f vp,r,1

p
,p(q

r)sp,k1 ,

and fvp,r,1,r(q) is not in Q[q] by construction.
Let sr,k2 = 0 = sp,k2 and sr,k3 = 1 = sp,k3 . Then

fvp,r,1,p(q)f vp,r,1
r

,r(q
p) =

f vp,r,1
r

,p(q
r)

f vp,r,1
r

,p(q)
= Pvp,r,1,p(q).

Let sr,k4 = 0 = sp,k4 . Then with sp,i and sr,i for i = 1, 2, 3 chosen as above, the following
must hold

f vp,r,1
p

,p(q) = f vp,r,1
r

,r(q).

Step 4: Let 1 := k0 and K := {k0, k1, k2, k3, k4}. Define

fp(q) =
∏
i∈K

fvp,r,i,p(q)
sp,i

and

fr(q) =
∏
i∈K

fvp,r,i,r(q)
sr,i

where sp,i and sr,i for i = 1, . . . , 4 are chosen as in Step 3.

Proposition 3.7. (Key Proposition 2) The choices made in Step 3 are possible and the polynomials
fp(q) and fr(q), constructed in Step 4 above, satisfy Functional Equation (1).

Proof. To prove that the choice

f vp,r,1
p

,r(q) := P vp,r,1
p

,r(q)

is possible, it is sufficient for us to verify that
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f vp,r,1
p

,r(q
p)

f vp,r,1
p

,r(q)fvp,r,1,r(q)
= g(qr)

for some monic polynomial g(q) with nonzero constant term since

f vp,r,1
p

,r(q
p)

f vp,r,1
p

,r(q)
= fvp,r,1,r(q)f vp,r,1

p
,p(q

r)sp,k1 .

With our choice of f vp,r,1
p

,r(q),

Pvp,r,1,r(q) =
f vp,r,1

p
,r(q

p)

f vp,r,1
p

,r(q)
.

Therefore, the set of roots of
f vp,r,1

p ,r
(qp)

f vp,r,1
p ,r

(q)
can be represented the collection of tuples

Ar := {(wr + t(r), wp) | 0 ≤ t ≤ r − 1, wr ∈ (Z/rZ)∗, wp ∈ (Z/pZ)∗}.

As the collection of roots of fvp,r,1,r(q) is presented by A(r) (see definition in Step 2), the collec-
tion of root of

f vp,r,1
p

,r(q
p)

f vp,r,1
p

,r(q)fvp,r,1,r(q)

can be represented by the collection of tuples

B(r) := {(wr + t(r), wp) | 0 ≤ t ≤ r − 1, wp ∈ Bp, wr ∈ Br}

where Bp = (Z/pZ)∗ and Br = (Z/rZ)∗ − Ar. Let g(q) be a monic polynomial who roots
are primitive vp,r,1-roots of unity represented by the collection of tuples

{(wr, wp) | wp ∈ Bp, wr ∈ Br}.

Then it can be verified ([2], [4]) that B(r) represents the collection of roots of g(qr). As a result,
we may define

f vp,r,1
p

,p(q) := g(q).

Next, let us prove that if
f vp,r,1

r
,p(q) = P vp,r,1

r
,p(q),

then the choices sr,k2 = 0 and sp,k3 = 1 = sr,k3 make sense. As

fvp,r,1,p(q)f vp,r,1
r

,r(q
p) =

f vp,r,1
r

,p(q
r)

f vp,r,1
r

,p(q)
= Pvp,r,1,p(q),

it is sufficient if we show that

f vp,r,1
r

,p(q
r)

f vp,r,1
r

,p(q)fvp,r,1,p(q)
=
Pvp,r,1,p(q)

fvp,r,1,p(q)
= g(qp)
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for some polynomial g(q). It can be verified that the collection of all roots of Pvp,r,1,p(q) can
be represented by the collection of tuples

Ap := {(wp + t(p), wr) | 0 ≤ t ≤ p− 1, wp ∈ (Z/pZ)∗, wr ∈ (Z/rZ)∗}.

Hence the collection of roots of
Pvp,r,1,p(q)

fvp,r,1,p(q)
can be represented by the collection Ap−A(p) = B(p)

where
B(p) := {(wp + t(p), wr) | 0 ≤ t ≤ p− 1, wr ∈ Br, wp ∈ Bp}

where Br = (Z/rZ)∗ − Ar and Bp = (Z/pZ)∗. Let g(q) be the monic polynomial whose roots
can be represented by the collection of tuples

{(wp, wr) | wr ∈ Br, wp ∈ Bp}.

As above, it can be verified that the collection of tuples B(p) represents the collection of all roots
of the polynomial g(qp). Therefore, we may define

f vp,r,1
r

,r(q) := g(q),

and the result follows.
Finally, with the choices of s2,ki for i = 1, 2, 3 made in Step 3, where 2 denotes either p or r,

it follows that

f vp,r,1
p

,p(q)
f vp,r,1

rp
,r(q

p)sr,k4

f vp,r,1
rp

,r(q)
sr,k4

= f vp,r,1
r

,r(q)
f vp,r,1

rp
,p(q

r)sp,k4

f vp,r,1
rp

,p(q)
sp,k4

Therefore, to show that the choices sr,k4 = 0 = sp,k4 is possible, we must show that

f vp,r,1
p

,p(q) = f vp,r,1
r

,r(q).

This follows immediately from above since f vp,r,1
p

,p(q) and f vp,r,1
r

,r(q) are defined as monic poly-
nomials whose roots are primitive vp,r,1-roots of unity represented by the collection of tuples

{(wp, wr) | wr ∈ Br, wp ∈ Bp}

and
{(wr, wp) | wp ∈ Bp, wr ∈ Br}

respectively. The result follows since these two collections of tuples coincide.
By construction,

fp(q) = fvp,r,1,p(q)fvp,r,k1 ,p(q)fvp,r,k3 ,p(q)

and
fr(q) = fvp,r,1,r(q)fvp,r,k1 ,r(q)fvp,r,k3 ,r(q)

where

1. fvp,r,1,r(q
p) = fvp,r,1,p(q

r).
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2. fvp,r,1,p(q)fvp,r,k3 ,p(q)fvp,r,k3 ,r(q
p) = fvp,r,k3 ,p(q

r)

3. fvp,r,k1 ,r(q
p) = fvp,r,1,r(q)fvp,r,k1 ,r(q)fvp,r,k1 ,p(q

r).

4. fvp,r,k1 ,p(q) = fvp,r,k3 ,r(q).

It can be verified that the product of the polynomials on the left hand side of (1), (2), (3) and (4)
(resp. the product of the polynomials on the right hand side of (1), (2), (3) and (4)) is equal to
fp(q)fr(q

p) (resp. fr(q)fp(qr)). Therefore, the result follows.

As a result, the polynomials fp(q) and fr(q) induce a unique sequence Γ of polynomials
satisfying Equation (2) with support base {p, r} and with coefficients not properly contains in Q.
Therefore, Γ cannot be generated by quantum integers by Theorem 1.9.

(2) Now let us suppose that there exists an odd prime r such that r divides pj − 1 for all pj in
P . There are two cases to consider:

(i) P contains 2: Let u = 2r. Then u > 2. Hence |(Z/uZ)∗| = |(Z/2rZ)∗| > 1. Therefore,
there exists at least one nonempty proper subset, denoted by Au, of (Z/uZ)∗ ∼= (Z/2Z)∗ ×
(Z/rZ)∗ ∼= (Z/rZ)∗. Let Ar be the subset of (Z/rZ)∗ such that

Au ∼= Ar.

Then Ar is a nonempty proper subset of (Z/rZ)∗.
For each pj in P − {2}, define

fpj(q) := fu,pj(q)fr,pj(q)

where:

1. fu,pj(q) is a monic polynomial whose roots are primitive upj-roots of unity represented by
the collection of tuples

{(wu, wpj) | wu ∈ Au, wpj ∈ (Z/pjZ)∗}.

Hence fu,pj(q) is a nontrivial monic polynomial whose coefficients are not properly con-
tained in Q.

2. fr,pj(q) = Pr,pj(q) is the cyclotomic polynomial of order rpj , i.e., the irreducible (in Q[q])
monic polynomial with coefficient in Q whose roots are all primitive rpj-roots of unity.
Hence roots of fr,pj(q) are represented by the collection of tuples

{(wr, wpj) | wr ∈ (Z/rZ)∗, wpj ∈ (Z/pjZ)∗}.
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Define
f2(q) := fu,2(q)fr,2(q)

where:

1. fu,2(q) is a monic polynomial whose roots are primitive u2-roots of unity represented by
the collection of tuples

{(1 + t(2), wr) | 0 ≤ t ≤ 1, wr ∈ Ar}.

Hence fu,2(q) is a nontrivial monic polynomial whose coefficients are not properly con-
tained in Q.

2. fr,2(q) is a monic polynomial whose roots are primitive r2-roots of unity represented by
the collection

{wu | wu ∈ (Z/uZ)∗ −Au} ∼= {wr | wr ∈ (Z/rZ)∗ −Ar}.

For each pj ∈ P , fpj(q) is a nontrivial polynomial whose coefficients are not properly contained
in Q since fu,pj(q) is a nontrivial monic polynomial whose coefficients are not properly contained
in Q. (see [4] for details). Let pn and pm be two primes in P − {r}. Since pn ≡ pm ≡ 1(mod r)
by assumption, it follows that pn ≡ pm ≡ 1(mod 2r). Therefore

fu,pn(qpm)

fu,pn(q)

and
fu,pm(qpn)

fu,pm(q)

are monic polynomials as a result of Key Proposition 1 and 1′ of [4], whose roots are represented
by the collection of tuples

{(wu, wpn , wpm) | wu ∈ Au, wpn ∈ (Z/pnZ)∗, wpm ∈ (Z/pmZ)∗}

and
{(wu, wpm , wpn) | wu ∈ Au, wpm ∈ (Z/pmZ)∗, wpn ∈ (Z/pnZ)∗}

respectively. These collections of tuples coincide. As a result,

fu,pn(qpm)

fu,pn(q)
=
fu,pm(qpn)

fu,pm(q)
,

or equivalently,
fu,pm(q)fu,pn(qpm) = fu,pn(q)fu,pm(qpn).
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Since fr,pn(q) = Pr,pn(q) and fr,pm(q) = Pr,pm(q) respectively, it is straightforward to verify that

fr,pn(qpm)

fr,pn(q)
=
Pr,pn(qpm)

Pr,pn(q)
= Prpnpm(q) =

Pr,pm(qpn)

Pr,pm(q)
=
fr,pm(qpn)

fr,pm(q)
,

where Prpnpm(q) is the cyclotomic polynomial with coefficients in Q and order rpnpm. Therefore,

fr,pm(q)fr,pn(qpm) = fr,pn(q)fr,pm(qpn).

As a result,
fpn(q)fpm(qpn) = fpm(q)fpn(qpm),

i.e., fpn(q) and fpm(q) satisfy Functional Equation (1).
Next, let p be any odd prime in P . Let fp(q) be defined as above. Since p ≡ 1(mod r) by

assumption, p ≡ 1(mod u). Hence
fu,2(qp)

fu,2(q)

is a monic polynomial whose roots are primitive u2p-roots of unity. It can be verified from the
collection of tuples of integers representing the roots of fu,2(q) stated earlier that the set of roots
of fu,2(qp)

fu,2(q)
consists of primitive u2p-roots of unity represented by the collection of tuples

{(1 + t(2), wr, wp) | 0 ≤ t ≤ 1, wr ∈ Ar, wp ∈ (Z/pZ)∗}.

By replacing either pn (or pm) by p in fpn(q) (or fpm(q)) above, the collection of roots of
fu,p(q) can be represented by the collection

{(wu, wp) | wu ∈ Au, wp ∈ (Z/pZ)∗}.

It can be verified that roots of fu,p(q2) are primitive up2-roots of unity represented by the
collection of tuples

{(1 + t(2), wr, wp) | 0 ≤ t ≤ 1, wr ∈ Ar, wp ∈ (Z/pZ)∗.

Hence,

fu,p(q
2) =

fu,2(qp)

fu,2(q)

or equivalently,
fu,2(q)fu,p(q

2) = fu,2(qp).

As Ar is a nonempty proper subset of (Z/rZ)∗ by construction, the coefficients of fr,2(q) are not
properly contained in Q. Then

fr,2(qp)

fr,2(q)

is a monic polynomial, since p ≡ 1(mod r) by assumption, whose roots are primitive r2p-roots
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of unity. Its roots can be represented by the collection of tuples

{(wu, wp) | wu ∈ (Z/uZ)∗ −Au, wp ∈ (Z/pZ)∗}.

Therefore, the collection of roots of the product of monic polynomials

fu,p(q)
fr,2(qp)

fr,2(q)

is represented by
{(wu, wp) | wu ∈ (Z/uZ)∗ −Au, wp ∈ (Z/pZ)∗}

∪{(wu, wp) | wu ∈ Au, wp ∈ (Z/pZ)∗} = {(wu, wp) | wu ∈ (Z/uZ)∗, wp ∈ (Z/pZ)∗}.

As fr,p(q) := Pr,p(q) by construction,

fr,p(q
2)

fr,p(q)
=
Pr,p(q

2)

Pr,p(q)
= Prp2(q)

where Prp2(q) is the cyclotomic polynomial in Q[q] of order rp2. Hence its roots are primitive
rp2 = up-roots of unity represented by the collection of tuples

{(wu, wp) | wu ∈ (Z/uZ)∗, wp ∈ (Z/pZ)∗}.

As a result,
fr,p(q

2)

fr,p(q)
= fu,p(q)

fr,2(qp)

fr,2(q)
.

Therefore,

fu,2(q)fu,p(q
2)
fr,p(q

2)

fr,p(q)
= fu,2(qp)fu,p(q)

fr,2(qp)

fr,2(q)
,

or equivalently,

(fu,2(q)fr,2(q))(fu,p(q
2)fr,p(q

2)) = (fu,p(q)fr,p(q))(fu,2(qp)fr,2(qp)).

The last equality can be rewritten as

fu,2(q)fp(q
2) = fp(q)f2(qp).

Therefore fu,2(q) and fu,p(q) satisfy Functional Equation (1) for any odd prime p in P . The
collection of polynomials {fs(q) | s ∈ P}, where fs(q) is defined above, induces a unique
sequence Γ of polynomials satisfying Functional Equation (2) with support base P and field of
coefficients strictly containing Q as desired.

(ii) P does not contain 2: Let u = r. Then u > 2 and thus |(Z/uZ)∗| = |(Z/rZ)∗| > 1. Let
pj be any prime in P and let Ar is a nonempty proper subset of (Z/rZ)∗. Define

fpj(q) = fu,pj(q)
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where fu,pj(q) is a monic polynomial whose roots are primitive upj-root of unity and are repre-
sented by the collection of ordered pairs

{(wr, wpj) | wr ∈ Ar, wpj ∈ (Z/pjZ)∗}.

Let pn and pm be two arbitrary primes in P . Hence the coefficients of fu,pj(q) are not properly
contained in Q since Ar is a nonempty proper subset of (Z/rZ)∗. As pn ≡ pm ≡ 1(mod r) by
assumption, it follows from Key Proposition 1 and 1′ of [4] that

fu,pm(qpn)

fu,pm(q)

and
fu,pn(qpm)

fu,pn(q)

are monic polynomials whose roots are primitive upnpm-roots of unity represented by the collec-
tion of tuples

{(wr, wpm , wpn) | wr ∈ Ar, wpm ∈ (Z/pmZ)∗, wpn ∈ (Z/pnZ)∗}

and
{(wr, wpn , wpm) | wr ∈ Ar, wpn ∈ (Z/pnZ)∗, wpm ∈ (Z/pmZ)∗},

respectively. These two collection are identical. As as result,

fu,pm(qpn)

fu,pm(q)
=
fu,pn(qpm)

fu,pn(q)

or equivalently,
fu,pn(q)fu,pm(qpn) = fu,pm(q)fu,pn(qpm).

Therefore,
fpn(q)fpm(qpn) = fpm(q)fpn(qpm),

i.e., fpn(q) and fpm(q) satisfy Functional Equation (1). From this point, the result follows as in
part (i) above.

(3) Next, suppose that 4 divide p− 1 for all odd prime p ∈ P . There are two cases:
(i) P contains 2: Let u = 4. Then

|(Z/uZ)∗| > 1.

Hence we can choose a nonempty proper subset, denoted by Au, of (Z/uZ)∗. Let p be an
odd prime of P . Let fu,p(q) be a monic polynomial whose roots are primitive up-roots of unity
represented by the collection of tuples

{(wu, wp) | wu ∈ Au, wp ∈ (Z/pZ)∗}.
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Hence the coefficients of fu,p(q) are not properly contained in Q. Let f2,p(q) be the cyclotomic
polynomial in Q[q] of order 2p. Hence its roots are primitive 2p-root of unity represented by the
collection of tuples

{(w2, wp) | w2 ∈ (Z/2Z)∗, wp ∈ (Z/pZ)∗}.

Let f1,p(q) = Pp(q)
2 where Pp(q) is the cyclotomic polynomial in Q[q] of order p. Since roots

of Pp(q) are primitive p-roots of unity represented by the collection of tuples

{wp | wp ∈ (Z/pZ)∗},

the collection of roots of f1,p(q) is represented by the collection

{wp | wp ∈ (Z/pZ)∗} t {wp | wp ∈ (Z/pZ)∗}

with t denoting the union where multiplicity is counted. Define

fp(q) := fu,p(q)f2,p(q)f1,p(q).

Let fu,2(q) be the monic polynomial whose roots are primitive 2u-roots of unity represented
by the collection of tuples

{(wu + t(u)) | 0 ≤ t ≤ 1, wu ∈ Au}.

Thus its coefficients are also not contained in Q. Let f2,2(q) be the monic polynomial whose
roots are primitive u-roots of unity represented by the collection of tuples

{wu | wu ∈ (Z/uZ)∗ −Au}.

It can be verified, using the fact that (Z/uZ)∗ −Au is a nonempty proper subset of (Z/uZ)∗,
that the coefficients of f2,2(q) are not properly contained in Q. Let f1,2(q) be the cyclotomic
polynomial in Q[q] of order 2. Hence its root is represented by

{w2 ∈ (Z/2Z)∗}.

Define
f2(q) = fu,2(q)f2,2(q)f1,2(q).

Since p ≡ 1(mod u) by assumption, it can be verified that

fu,2(qp)

fu,2(q)

and
fu,p(q

2)

are a monic polynomials whose roots are primitive up2-roots of unity represented by the same
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collection of tuples

{(wu + t(u), wp) | 0 ≤ t ≤ 1, wu ∈ Au, wp ∈ (Z/pZ)∗}.

Therefore,

fu,p(q
2) =

fu,2(qp)

fu,2(q)
.

Since p ≡ 1(mod u), p ≡ 1(mod 2). It follows that

f2,2(qp)

f2,2(q)

is a monic polynomial whose roots are primitive up-roots of unity represented by the collection
of tuples

{(wu, wp) | wu ∈ (Z/uZ)∗ −Au, wp ∈ (Z/pZ)∗}.

Hence the roots of the product of monic polynomials

fu,p(q)
f2,2(qp)

f2,2(q)

are represented by the collection of tuples

{(wu, wp) | wu ∈ Au, wp ∈ (Z/pZ)∗}

∪{(wu, wp) | wu ∈ (Z/uZ)∗−Au, wp ∈ (Z/pZ)∗} = {(wu, wp) | wu ∈ (Z/uZ)∗, wp ∈ (Z/pZ)∗}.

It can be verified that f2,p(q
2) is a monic polynomial whose roots are primitive up-roots of unity

represented by the collection of tuples

{((w2 + t(2)), wp) | 0 ≤ t ≤ 1, w2 ∈ (Z/2Z)∗, wp ∈ (Z/pZ)∗}

∼= {((wu, wp) | wu ∈ (Z/uZ)∗, wp ∈ (Z/pZ)∗}.

As a result,

f2,p(q
2) = fu,p(q)

f2,2(qp)

f2,2(q)
.

Since f1,2(q) = P2(q), the cylotomic polynomial in Q[q] of order 2,

f1,2(qp)

f1,2(q)
=
P2(qp)

P2(q)
= P2p(q),

the cyclotomic polynomial in Q[q] of order 2p. Hence its roots can be represented by the collec-
tion of tuples

{((w2, wp) | w2 ∈ (Z/2Z)∗, wp ∈ (Z/pZ)∗}.
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Thus the product of monic polynomials

f2,p(q)
f1,2(qp)

f1,2(q)

is a monic polynomial whose roots are primitive 2p-roots of unity represented by the collection
of tuples

{(w2, wp) | w2 ∈ (Z/2Z)∗, wp ∈ (Z/pZ)∗} t {(w2, wp) | w2 ∈ (Z/2Z)∗, wp ∈ (Z/pZ)∗}

with t denoting the union where multiplicity is counted. Since roots of Pp(q) are presented by
the collection

{wp | wp ∈ (Z/pZ)∗},

it can be verified that the union of sets above represents exactly the collection of roots of

f1,p(q
2)

f1,p(q)
=

(Pp(q
2))2

(Pp(q))2
= (P2p(q))

2,

where P2p(q)) denotes the cyclotomic polynomial in Q[q] of order 2p. Therefore,

f1,p(q
2)

f1,p(q)
= f2,p(q)

f1,2(qp)

f1,2(q)
.

As a result,

fu,p(q
2)f2,p(q

2)
f1,p(q

2)

f1,p(q)
=
fu,2(qp)

fu,2(q)
fu,p(q)

f2,2(qp)

f2,2(q)
f2,p(q)

f1,2(qp)

f1,2(q)
,

or equivalently
(fu,2(q)f2,2(q)f1,2(q))(fu,p(q

2)f2,p(q
2)f1,p(q

2))

= (fu,p(q)f2,p(q)f1,p(q))(fu,2(qp)f2,2(qp)f1,2(qp)).

The last equality can be rewritten as

f2(q)fp(q
2) = fp(q)f2(qp).

Thus f2(q) and fp(q) satisfy Functional Equation (1). They induce, by Theorem 1.5, a unique
sequence of polynomials

Γ = {fn(q) | n ∈ N}

whose elements satisfy Functional Equation (2) with support base P and with field of coefficients
strictly containing Q.

(ii) P does not contain 2: Let u = 4. Let pn and pm be two primes in P . LetAu be a nonempty
proper subset of (Z/uZ)∗. Let fu,pn(q) and fu,pn(q) be the monic polynomials whose roots are
primitive upn-roots of unity and upm-roots of unity respectively and represented by the collection
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of tuples
{(wu, wpn) | wu ∈ Au, wpn ∈ (Z/pnZ)∗}

and
{(wu, wpm) | wu ∈ Au, wpm ∈ (Z/pmZ)∗}

respectively. It can be verified that the coefficients of fu,pn(q) and fpn(q) are not properly con-
tained in Q. Since pn ≡ pm ≡ 1(mod u) by assumption,

fu,pn(qpm)

fu,pn(q)

and
fu,pm(qpn)

fu,pm(q)

are monic polynomials whose roots are primitive upnpm-roots of unity represented by the collec-
tions of tuples

{(wu, wpn , wpm) | wu ∈ Au, wpn ∈ (Z/pnZ)∗, wpm ∈ (Z/pnZ)∗}

and
{(wu, wpm , wpn) | wu ∈ Au, wpm ∈ (Z/pmZ)∗, wpn ∈ (Z/pnZ)∗}.

Since these two collections of tuples are equal,

fu,pn(qpm)

fu,pn(q)
=
fu,pm(qpn)

fu,pm(q)
,

or equivalently,
fu,pm(q)fu,pn(qpm) = fu,pn(q)fu,pm(qpn).

Define fpn(q) := fu,pn(q) and fpm(q) := fu,pm(q). Then fpn(q) and fpn(q) satisfy Functional
Equation (1). The rest of the argument follows as in (i) above.

(4) Finally, suppose that there exists an odd prime r in P such that r divides p − 1 for all
primes p in P − {r}. Since r > 2,

|(Z/rZ)∗| > 1.

Hence there exists at least one nonempty proper subset, denoted by Ar, of (Z/rZ)∗. Let p be
any prime in P − {r}. Let fr,p(q) be the monic polynomial whose roots are primitive rp-roots of
unity represented by the collection of tuples

{(wr, wp) | wr ∈ Ar, wp ∈ (Z/pZ)∗}.

Hence the coefficients of fr,p(q) are not properly contained in Q. Let f1,p(q) := Pp(q), the
cyclotomic polynomial in Q[q] of order p. Hence roots of f1,p(q) are represented by the collection
of tuples

{wp | wp ∈ (Z/pZ)∗}.
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Define
fp(q) := fr,p(q)f1,p(q).

On the other hand, let fr,r(q) be the monic polynomial whose roots are primitive r2-roots of unity
represented by the collection of tuple

{(wr + t(r)) | 0 ≤ t ≤ r − 1, wr ∈ Ar}.

It can be verified that the coefficients of fr,r(q) are not properly contained in Q. Let f1,r(q) be
the monic polynomial whose roots are primitive r-roots of unity represented by the collection of
tuples

{wr | wr ∈ (Z/rZ)∗ −Ar}.

Define
fr(q) = fr,r(q)f1,r(q).

Since p ≡ 1(mod r) by hypothesis,
fr,r(q

p)

fr,r(q)

is a monic polynomial, by Key Proposition 1 of [4], whose roots are primitive r2p-roots of unity
represented by the collection of tuples

{(wr + t(r), wp) | 0 ≤ t ≤ r − 1, wr ∈ Ar, wp ∈ (Z/pZ)∗}.

It can be verified also that fr,p(qr) is a monic polynomial whose roots are primitive pr2-roots of
unity presented by the collection of tuples

{(wr + t(r), wp) | 0 ≤ t ≤ r − 1, wr ∈ Ar, wp ∈ (Z/pZ)∗}.

Therefore,

fr,p(q
r) =

fr,r(q
p)

fr,r(q)
.

It can be verified that
f1,p(q

r)

f1,p(q)
=
Pp(q

r)

Pp(q)
= Ppr(q)

where Ppr(q) is the cyclotomic polynomial in Q[q] of order pr. Hence its roots are primitive
pr-roots of unity represented by the collection of tuples

{(wp, wr) | wr ∈ (Z/rZ)∗, wp ∈ (Z/pZ)∗}.

It can be verified that
f1,r(q

p)

f1,r(q)

is a monic polynomial whose roots are primitive rp-roots of unity represented by the collection
of tuples
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{(wr, wp) | wr ∈ (Z/rZ)∗ −Ar, wp ∈ (Z/pZ)∗}.

Therefore,

fr,p(q)
f1,r(q

p)

f1,r(q)

is a monic polynomial whose roots are primitive rp-roots of unity represented by the collection
of tuples

{(wr, wp) | wr ∈ Ar, wp ∈ (Z/pZ)∗} ∪ {(wr, wp) | wr ∈ (Z/rZ)∗ −Ar, wp ∈ (Z/pZ)∗}

= {(wr, wp) | wr ∈ (Z/rZ)∗, wp ∈ (Z/pZ)∗}.
As a result,

f1,p(q
r)

f1,p(q)
= fr,p(q)

f1,r(q
p)

f1,r(q)
.

Therefore,

fr,p(q
r)
f1,p(q

r)

f1,p(q)
= fr,p(q)

f1,r(q
p)

f1,r(q)

fr,r(q
p)

fr,r(q)
,

or equivalently,

(fr,r(q)f1,r(q))fr,p(q
r)f1,p(q

r) = (fr,p(q)f1,p(q))f1,r(q
p)fr,r(q

p).

The last equality can also be written as

fr(q)fp(q
r) = fp(q)fr(q

p),

i.e., fp(q) and fr(q) satisfy Functional Equation (1).
The collection of polynomials

{fp(q) | p ∈ P}

induces, by Theorem 1.5, a unique sequence of polynomials Γ = {fn(q) | n ∈ AP} satisfying
Functional Equation (2) with field of coefficients strictly containing Q.

Proof. (proof of Corollary 2.2) It is known that the collection of natural numbers

{4k + 1 | k = 1, . . . ,∞},

or more generally, the collection of natural numbers

{rk + 1 | k ∈ 1, . . . ,∞},

where r is any fixed natural number, contains infinitely many primes (see Dirichlet’s primes in
arithmetic progression theorem). Let P be a collection of all primes of the form

P1 = {pi | pi = 4ki + 1, ki ∈ N},

or

P2 = {pi | pi = rki + 1, ki ∈ N}

27



for some odd prime r. Then P1 and P2 are of infinite cardinality. Let P be any infinite subset
of P1 or P2. Condition (2) or (3) of Theorem 2.1 says that if 4 divide p − 1 for all p in a set
of primes P or if there exists an odd prime r dividing p − 1 for all primes p in P , then there
exist sequences of polynomials Γ satisfying Functional Equation (2) with field of coefficients of
characteristic zero strictly containing Q and support base P . Therefore, the result follows from
Theorem 1.9.
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