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Abstract: Dokos et al. recently conjectured that the distribution polynomial f,(¢) on the set of
permutations of size n avoiding the pattern 321 for the number of inversions is given by

n—2

Fal@) = for(@ + D& (@ faak(@), n>1,

k=0

with fo(q) = 1, which was later proven in the affirmative, see [1]. In this note, we provide a new
proof of this conjecture, based on the scanning-elements algorithm described in [3], and present
an identity obtained by equating two explicit formulas for the generating function ) _, ., a,(q)x".
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1 Introduction

Let S, denote the set of permutations of size n. Two sequences of distinct numbers,
a = aas---a, and b = b1by - - - b, are said to be order isomorphic whenever they satisfy a; > a;
if and only if b; > b;, forall 1 < i < j < n. We will say that 7 € S, contains 7 € Sj as a
pattern if there is a subsequence of 7 that is order isomorphic to 7. For example, the permutation
m = 14523 € S5 contains the pattern 132 but not the pattern 213. We denote the subset of permu-
tations of S,, whose members do not contain (i.e., avoid) the pattern 7 by S, (7). The inversion
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number of m = w7y - - - T, denoted inv(), is the number of occurrences of the pattern 21 in 7,
that is,
inv(m) = [{(¢,7) | m >mjand 1 <i < j<n}|

Dokos et al. [2] conjectured that the polynomial f,(q) = >, cs, 301) ¢"™(") satisfies

7T€Sn

n—2

Fal@) = focr(@) + D& (@) fariok(@), n>1 (1

k=0

with fo(q) = 1. More recently, this conjecture has been shown to be true by Cheng et al. [1,
Theorem 2.2], who used a bijection together with previous combinatorial results from [4] con-
cerning the distribution of some statistics on parallelogram polyominoes and ballot sequences. In
this note, we hope to shed some further light on this recurrence and provide a different solution
for it, one that is more algebraic. Our main result may be formulated as follows, where we have
used the notation (z;¢); = (1 —z)(1 —qz)--- (1 — ¢ ).

Theorem 1. The generating function . fn(q)x™ is given by

L+ (@9);(¢ Djr 1
ijo(_l) (¢:9);(xq; 1-—
4 9);(2¢; q); 1 Tq
|
s

Moreover, the polynomial f,(q) satisfies (1).

The proof of this theorem is given in the next section and is based on the scanning-elements
algorithm described in [3].

2 Proof of Theorem 1

Let f,,(¢|a) denote the generating function which counts the members 7 = 7o - - - 7, € S,,(321),
with m; = a, according to the number of inversions, that is,

faldle) = Y g™,

m=an’' €5, (321)

Clearly, f,,(¢) = >__, fn(gla). From the definitions, we can state the recurrence

n—1
faldla) = qfar(gla= 1)+ ¢ faalgli), 2<a<n,
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with f,,(¢|1) = f,—1(¢). To solve this recurrence, we let F),(¢;t) = > »_, fn(gla)t**. Multiply-
ing the above recurrence relation by =1, and summing over @ = 2, 3, ..., n, we obtain

n—1 ;
qt — (qt)’ .
Falait) = 30 I o) + aFes(ast) + Faa 1),
j=1

which is equivalent to

Fo(g;t) = 1_—qt(Fn_1(q; 1) = Fooilgs qt)) + @tFoa(q;t) + Fooa(g; 1), n=2,
with F(q;t) = 1.
Now define F'(z,q;t) = >, -, Fi.(g;t)x". Then the last recurrence may be expressed as

T T qtx

F(z,q;t) = T + (l—qt)(l—th)F(x’q;l)_ (1—qt)(1 — qtx)

F(z,q;qt).

Iterating this equation an infinite number of times, we obtain
F(z,q;t) =

q'tr
(1—¢t)(1 - q'tx)’

-

D e e )

which gives

i=1

) 11 q<]+1>tjgjj+l
Fla,gt) = Y (=1 (1= ¢t + Fla,g:1) 0= 700 =gt

Hence, we can state the following result.

Theorem 2. We have

(— 1)JC](J ") it
(45 9)i (¢ @)1

> so(—1) ki

(¢:9)i(2q; q);

Z]>O

F(z,q;1) =

To prove (1), we will show that the sequence determined by (1) has generating function
1+ F(z,q;1). To do so, we define

(—1)jq(H1)x3+1
Az, q) _ 72 (¢:0);(2¢; 0)j1
B(z,q) 1) q(é)xj
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. The next lemma supplies the key properties of

Theorem 2 states that F'(x,q;1) =

A(z,q) and B(z, q) which we’ll need.
Lemma 3. We have
l1—=x
Blrq.q) =~ Alw.q),
1—2aq
A(zq,q) = (1 -2 —2q)A(z,q) — 2B(z,q))

Proof. From the definitions, we have

. (%)'W J 1— 1
_ Y q T _ q .
B(xq,q)—];( Y A
and
(1 -z —xq)A(z,q) — 2B(z, q)
:(1—x_xq)2( 1)iq ("3 )le_IZ(_l)jM
= (60iG i S (¢:9)(2q; q);
1)zt q (3) . ‘
E a;o (24 4)j1 (1 =2 —2)g’ — 1+ a2q"™)
B (— 1)ij+1q( ) i
- S (@00 0)n (1 =2) =1)
e (U)o (—1iad ()
S (G0iaane (@000
B (_1)jwj+3q(j;2)+1
_jzz; (¢: 0);(2q; q)j+2
= 1x2iqA(xq,q),
as required. -

Lemma 4. Let a,, be the sequence defined by the recurrence

n—2
_ § : k+1
Qp = Qp—1 + q ApQp—1—k, n Z 17

k=0
with ag = 1. Then the generating function ano a,x™ is given by 1 + F(x, q; 1).
Proof. Let G(z) = ), 5, a,x". Then the recurrence may be written as

G(r) =14 2G(x) + 2qG(2)G(xq) — 2qG(zq),
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which implies

1 — 2qG(xq)
G(z) = ) 2
(z) 1 — 2 —2qG(2q) @
On the other hand,
Ly towaFlggl)+1) x
1 -z —2q(F(zq, ;1) +1)  1—2—zq(F(zq,¢;1) + 1)

T

A(zq,q)’

1—x—$q—$qB(xq q)

Y

so by Lemma 3, we have

1 —zq(F(zq,q;1)+1)  Alx,q) -
-l 1—2—2q(F(xq,q;1)+1)  B(z,q) =Flagl)

Note that the functional equation (2) has a unique power series solution since it determines the
coefficients of such a solution. Hence by uniqueness, G(z) = F(z,q;1) + 1. O

Theorem 1 now follows from Theorem 2 and Lemma 4.

References

[1] Cheng, S.-E., S. Elizalde, A. Kasraoui, B. E. Sagan. Inversion and major index polynomials,
Preprint, http://arxiv.org/pdf/1112.6014.pdf.

[2] Dokos, T., T. Dwyer, B. P. Johnson, B. E. Sagan, K. Selsor. Permutation patterns and statis-
tics, Discrete Math., Vol. 312, 2012, 2760-2775.

[3] Firro, G., T. Mansour. Three-letter-pattern-avoiding permutations and functional equations,
Electron. J. Combin., Vol. 13, 2006, #R51.

[4] Firlinger, J., J. Hofbauer, ¢-Catalan numbers, J. Combin. Theory Ser. A, Vol. 40, 1985,
No. 2, 248-264.

78



