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Abstract: Dokos et al. recently conjectured that the distribution polynomial fn(q) on the set of
permutations of size n avoiding the pattern 321 for the number of inversions is given by

fn(q) = fn−1(q) +
n−2∑
k=0

qk+1fk(q)fn−1−k(q), n ≥ 1,

with f0(q) = 1, which was later proven in the affirmative, see [1]. In this note, we provide a new
proof of this conjecture, based on the scanning-elements algorithm described in [3], and present
an identity obtained by equating two explicit formulas for the generating function

∑
n≥0 an(q)x

n.
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AMS Classification: 11B37, 11B65, 05A15.

1 Introduction

Let Sn denote the set of permutations of size n. Two sequences of distinct numbers,
a = a1a2 · · · an and b = b1b2 · · · bn, are said to be order isomorphic whenever they satisfy ai > aj
if and only if bi > bj , for all 1 ≤ i < j ≤ n. We will say that π ∈ Sn contains τ ∈ Sk as a
pattern if there is a subsequence of π that is order isomorphic to τ . For example, the permutation
π = 14523 ∈ S5 contains the pattern 132 but not the pattern 213. We denote the subset of permu-
tations of Sn whose members do not contain (i.e., avoid) the pattern τ by Sn(τ). The inversion
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number of π = π1π2 · · · πn, denoted inv(π), is the number of occurrences of the pattern 21 in π,
that is,

inv(π) = |{(i, j) | πi > πj and 1 ≤ i < j ≤ n}|.

Dokos et al. [2] conjectured that the polynomial fn(q) =
∑

π∈Sn(321)
qinv(π) satisfies

fn(q) = fn−1(q) +
n−2∑
k=0

qk+1fk(q)fn−1−k(q), n ≥ 1, (1)

with f0(q) = 1. More recently, this conjecture has been shown to be true by Cheng et al. [1,
Theorem 2.2], who used a bijection together with previous combinatorial results from [4] con-
cerning the distribution of some statistics on parallelogram polyominoes and ballot sequences. In
this note, we hope to shed some further light on this recurrence and provide a different solution
for it, one that is more algebraic. Our main result may be formulated as follows, where we have
used the notation (x; q)j = (1− x)(1− qx) · · · (1− qj−1x).

Theorem 1. The generating function
∑

n≥0 fn(q)x
n is given by

1 +

∑
j≥0

(−1)jq(
j+1
2 )xj+1

(q; q)j(xq; q)j+1∑
j≥0(−1)j

q(
j
2)xj

(q; q)j(xq; q)j

=
1

1− x

1− xq

1− xq

1− xq2

1− xq2

. . .

.

Moreover, the polynomial fn(q) satisfies (1).

The proof of this theorem is given in the next section and is based on the scanning-elements
algorithm described in [3].

2 Proof of Theorem 1

Let fn(q|a) denote the generating function which counts the members π = π1π2 · · · πn ∈ Sn(321),
with π1 = a, according to the number of inversions, that is,

fn(q|a) =
∑

π=aπ′∈Sn(321)

qinv(π).

Clearly, fn(q) =
∑n

a=1 fn(q|a). From the definitions, we can state the recurrence

fn(q|a) = qfn−1(q|a− 1) + qa−1
n−1∑
j=a

fn−1(q|j), 2 ≤ a ≤ n,
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with fn(q|1) = fn−1(q). To solve this recurrence, we let Fn(q; t) =
∑n

a=1 fn(q|a)ta−1. Multiply-
ing the above recurrence relation by ta−1, and summing over a = 2, 3, . . . , n, we obtain

Fn(q; t) =
n−1∑
j=1

qt− (qt)j

1− qt
fn−1(q|j) + qtFn−1(q; t) + Fn−1(q; 1),

which is equivalent to

Fn(q; t) =
qt

1− qt
(Fn−1(q; 1)− Fn−1(q; qt)) + qtFn−1(q; t) + Fn−1(q; 1), n ≥ 2,

with F1(q; t) = 1.
Now define F (x, q; t) =

∑
n≥1 Fn(q; t)x

n. Then the last recurrence may be expressed as

F (x, q; t) =
x

1− qtx
+

x

(1− qt)(1− qtx)
F (x, q; 1)− qtx

(1− qt)(1− qtx)
F (x, q; qt).

Iterating this equation an infinite number of times, we obtain

F (x, q; t) =

=
∑
j≥0

(−1)j
(

x

1− qj+1tx
+

x

(1− qj+1t)(1− qj+1tx)
F (x, q; 1)

) j∏
i=1

qitx

(1− qit)(1− qitx)
,

which gives

F (x, q; t) =
∑
j≥0

(−1)j
(
1− qj+1t+ F (x, q; 1)

) q(
j+1
2 )tjxj+1∏j+1

i=1 (1− qit)(1− qitx)
.

Hence, we can state the following result.

Theorem 2. We have

F (x, q; 1) =

∑
j≥0

(−1)jq(
j+1
2 )xj+1

(q; q)j(xq; q)j+1∑
j≥0(−1)j

q(
j
2)xj

(q; q)j(xq; q)j

.

To prove (1), we will show that the sequence determined by (1) has generating function
1 + F (x, q; 1). To do so, we define

A(x, q)

B(x, q)
≡

∑
j≥0

(−1)jq(
j+1
2 )xj+1

(q; q)j(xq; q)j+1∑
j≥0(−1)j

q(
j
2)xj

(q; q)j(xq; q)j

.
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Theorem 2 states that F (x, q; 1) =
A(x, q)

B(x, q)
. The next lemma supplies the key properties of

A(x, q) and B(x, q) which we’ll need.

Lemma 3. We have

B(xq, q) =
1− xq
x

A(x, q),

A(xq, q) =
1− xq
x2q

(
(1− x− xq)A(x, q)− xB(x, q)

)
.

Proof. From the definitions, we have

B(xq, q) =
∑
j≥0

(−1)j q(
j
2)+jxj

(q; q)j(xq2; q)j
=

1− xq
x

A(x, q)

and

(1− x− xq)A(x, q)− xB(x, q)

= (1− x− xq)
∑
j≥0

(−1)jq(
j+1
2 )xj+1

(q; q)j(xq; q)j+1

− x
∑
j≥0

(−1)j q(
j
2)xj

(q; q)j(xq; q)j

=
∑
j≥0

(−1)jxj+1q(
j
2)

(q; q)j(xq; q)j+1

(
(1− x− xq)qj − 1 + xqj+1

)
=
∑
j≥0

(−1)jxj+1q(
j
2)

(q; q)j(xq; q)j+1

(
(1− x)qj − 1

)
=
∑
j≥0

(−1)jxj+2q(
j+1
2 )

(q; q)j(xq; q)j+2

−
∑
j≥0

(−1)jxj+2q(
j+1
2 )

(q; q)j(xq; q)j+1

=
∑
j≥0

(−1)jxj+3q(
j+2
2 )+1

(q; q)j(xq; q)j+2

=
x2q

1− xq
A(xq, q),

as required.

Lemma 4. Let an be the sequence defined by the recurrence

an = an−1 +
n−2∑
k=0

qk+1akan−1−k, n ≥ 1,

with a0 = 1. Then the generating function
∑

n≥0 anx
n is given by 1 + F (x, q; 1).

Proof. Let G(x) =
∑

n≥0 anx
n. Then the recurrence may be written as

G(x) = 1 + xG(x) + xqG(x)G(xq)− xqG(xq),
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which implies

G(x) =
1− xqG(xq)

1− x− xqG(xq)
. (2)

On the other hand,

−1 + 1− xq(F (xq, q; 1) + 1)

1− x− xq(F (xq, q; 1) + 1)
=

x

1− x− xq(F (xq, q; 1) + 1)

=
x

1− x− xq − xqA(xq, q)
B(xq, q)

,

so by Lemma 3, we have

−1 + 1− xq(F (xq, q; 1) + 1)

1− x− xq(F (xq, q; 1) + 1)
=
A(x, q)

B(x, q)
= F (x, q; 1).

Note that the functional equation (2) has a unique power series solution since it determines the
coefficients of such a solution. Hence by uniqueness, G(x) = F (x, q; 1) + 1.

Theorem 1 now follows from Theorem 2 and Lemma 4.
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