On rational fractions not expressible as a sum of three unit fractions

Simon Brown

The Deviot Institute, Deviot, Tasmania 7275, Australia and School of Human Life Sciences, University of Tasmania, Locked Bag 1320, Launceston, Tasmania 7250, Australia e-mail: Simon.Brown@deviotinstitute.org

Abstract: Of those fractions (a/b < 1) that can not be expressed as a sum of three unit fractions, many can be written in terms of three unit fractions if the smallest denominator is $\lfloor b/a \rfloor$ and the next largest denominator is < 0. General expressions are given for some specific classes of these. Two examples of Yamamoto are reconsidered.

Keywords: Unit fraction.

AMS Classification: 11D68.

Almost all rational fractions $(a/b, 0 \le a \le b)$ can be expressed as the sum of three unit fractions [4, 5]

$$\frac{a}{b} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \quad 0 < x \le y \le z,$$
(1)

where *a*, *b*, *x*, *y* and *z* are integers. It follows from (1) that b/a < x < 3b/a [1], but there are often solutions corresponding to x = |b/a| + 1 [2].

A list of fractions (a = 8, 9, ... 18 with prime b) that can not be expressed in this way was given by Webb [6]. Here I consider the 134 fractions in that list for which a < b. All except 18 of these (Table 1) can be expressed in terms of three unit fractions if two changes are made to (1). The first is that $x = \lfloor b/a \rfloor$, from which 1/x > a/b, and so y < 0, which is the second modification. Both of these modifications of (1) are present in a series of general expressions, such as

$$\frac{18}{36n+5} = \frac{1}{2n} - \frac{1}{2n(7n+1)} + \frac{1}{2(7n+1)(36n+5)}$$
(2)

Table 1. Fractions in Webb's [6] list that can not be expressed in three unit fractions using (1), (2) or the other similar expressions given by Sierpiński [3], (4-6) or (7).

a	b	a	b	a	b		а	b		а	b
8	11	15	19	17	23		18	31		18	193*
12	29	15	23	17	41		18	47		18	281
14	17	15	53	18	23		18	59			
14	19	16	23	18	29		18	137			
* If $x = \lfloor b/a \rfloor - 1$, a solution is $(x, y, z) = (9, -56, 97272)$.											

for integral n > 0, reported by Sierpiński [3]. Equation (2) provides a solution for 18/41, 18/113, 18/149 and 18/761 (corresponding to n = 1, 3, 4 and 21, respectively) each of which appears on Webb's [6] list. Other expressions in this series [3] provide similar expansions for 18/61, 18/131, 18/223 and 18/239, each of which also appears on Webb's [6] list, and there are other solutions if z < 0 is also permitted.

These observations prompted the reconsideration of two examples given by Yamamoto [7]. First, for prime $b \ge 11$, (b - 1)/b can not be expressed as the sum of three unit fractions (1). This is also the case for some non-prime b, for example b = 14, 16, 21, 25, ..., although there are instances where (1) does apply for non-prime b (such as a/b = 8/9, for which (x, y, z) = (2, 3, 18) is a solution). Yamamoto's [7] second example is that (b - 1)/2b, for prime $b \ge 29$, can not be expressed as the sum of three unit fractions (1). This is also the case for some non-prime b, for example b = 25, 33, 49, 65, ..., although there are instances where (1) does apply for non-prime b (such as a/b = 4/9, for which (x, y, z) = (3, 10, 90) is a solution). There is a solution for each of these examples if x = |b/a| and y < 0 in (1), for example

$$\frac{m-1}{m} = 1 - \frac{1}{m-1} + \frac{1}{m(m-1)}$$
(3)

for integral m > 1, and

$$\frac{m-1}{2m} = \frac{1}{2} - \frac{1}{m} + \frac{1}{2m} \tag{4}$$

for integral m > 1, as can be confirmed by simplifying the RHS in each case. Equations (3) and (4) account, respectively, for 4 and 5 fractions in Webb's [6] list (m = 11, 13, 17, 19 and m = 17, 19, 29, 31, 38, respectively).

Equations (3) and (4) are related by the following lemma.

Lemma 1. If $x = \lfloor b/a \rfloor$ and y < 0 in (1), then a/b = (m - 1)/km, for integral k > 1 and m > 0, can be expanded as

$$\frac{m-1}{km} = \frac{1}{k} - \frac{1}{(k-1)m} + \frac{1}{k(k-1)m}.$$
(5)

Proof. Equation (5) can be confirmed by simplifying the RHS.

Remark. Equation (5), using k ranging from 3 to 1020, accounts for 55 fractions (Table 2) in Webb's [6] list in addition to the 9 mentioned above.

a	b	а	b	a	b			а	b]	а	b
8	241	12	2521	15	541		ſ	16	641		18	73
10	61	12	2593	15	1171			16	769		18	109
10	181	12	3433	15	4201			16	1201		18	181
12	37	12	10369	16	97			16	1489		18	379
12	73	12	12049	16	113			16	2113		18	397
12	97	12	12241	16	193			16	2689		18	541
12	193	13	53	16	241			16	3169		18	613
12	433	13	79	16	257			16	3361		18	811
12	577	15	61	16	421			16	4801		18	1009
12	1129	15	151	16	577			16	4993		18	1297
12	1657	15	271	16	593			17	1123		18	2269
12	1873					_	-			-		

Table 2. Fractions in Webb's [6] list that can be expressed in three unit fractions using (5).

Table 3. Fractions in Webb's [6] list that can be expressed in three unit fractions using (6).

а	b	а	b	а	b		a	b		а	b
8	131	14	59	15	137	1	16	421		17	157
10	43	14	353	15	197		17	53		18	113
13	67	15	47	15	1103		17	71		18	821
13	211	15	79	15	1367				-		

Another 18 of these fractions (Table 3) can be expressed in a form similar to that of (5).

Lemma 2. If (ax - b) | (x - 1), then for b = (acx + x - 1)/c

$$\frac{a}{b} = \frac{1}{x} - \frac{1}{bc} + \frac{1}{bcx}.$$
 (6)

where c = (x-1)/(ax-b) and $x = \lfloor b/a \rfloor$.

Another three of Webb's [6] fractions (9/11, 15/17, 17/19) can be expressed differently.

Lemma 3. For *n* =1, 2, ... and *m* = 1, 2, ...

$$\frac{mn-m+1}{mn+1} = 1 - \frac{1}{n} + \frac{1}{n(mn+1)}.$$
(7)

Proof. Equation (7) can be confirmed by simplifying the RHS.

References

- [1] Brown, S. Bounds of the denominators of Egyptian fractions, *World Applied Programming*, Vol. 2, 2012, 425–430.
- [2] Brown, S. On the number of sums of three unit fractions, *Notes on Number Theory and Discrete Mathematics*, Vol. 19, 2013, No. 4, 28–32.
- [3] Sierpinski, W. Sur les décompositions de nombres rationnels en fractions primaires, *Mathesis*, Vol. 65, 1956, 16–32.
- [4] Vaughan, R. C. On a problem of Erdös, Straus and Schinzel, *Matematika*, Vol. 17, 1970, 193–198.
- [5] Vose, M. D. Egyptian fractions, *Bulletin of the London Mathematical Society*, Vol. 17, 1985, 21–24.
- [6] Webb, W. A. Rationals not expressible as a sum of three unit fractions, *Elemente der Mathematik*, Vol. 29, 1974, 1–6.
- [7] Yamamoto, K. On a conjecture of Erdös, *Memoirs of the Faculty of Science, Kyushu University*, Vol. 18, 1964, 166–167.