Notes on Number Theory and Discrete Mathematics ISSN 1310–5132 Vol. 20, 2014, No. 2, 44–51

Mean values of the error term with shifted arguments in the circle problem

Jun Furuya^{1,2} and Yoshio Tanigawa³

¹ Department of Integrated Human Sciences (Mathematics) Hamamatsu University School of Medicine Handayama 1-20-1, Higashi-ku, Hamamatsu city, Shizuoka, 431-3192, Japan e-mail: jfuruya@hama-med.ac.jp

> ² Department of Integrated Arts and Science Okinawa National College of Technology Nago, Okinawa, 905-2192, Japan e-mail: jfuruya@okinawa-ct.ac.jp

³ Graduate School of Mathematics Nagoya University Nagoya, 464-8602, Japan e-mail: tanigawa@math.nagoya-u.ac.jp

Abstract: In this paper, we show the relation between the shifted sum of a number-theoretic error term and its continuous mean (integral). We shall obtain a certain expression of the shifted sum as a linear combination of the continuous mean with the Bernoulli polynomials as their coefficients. As an application of our theorem, we give better approximations of the continuous mean by a shifted sum.

Keywords: The circle problem, Mean value of error terms, Shifted sum, Bernoulli polynomial. **AMS Classification:** 11N37.

1 Introduction

Let f(n) be an arithmetical function and let E(x) be the number-theoretic error term defined by

$$E(x) = \sum_{n \le x} f(n) - g(x),$$
 (1.1)

where g(x) is the main term of the summatory function of f(n), which is usually written by infinitely differentiable elementary functions. When f(n) = d(n), the number of positive divisors of n, then $g(x) = x(\log x + 2\gamma - 1)$ (γ being the Euler constant) and E(x) is usually denoted by $\Delta(x)$. On the other hand when f(n) = r(n), the number of ways to write n as a sum of two squares of integers, then $g(x) = \pi x$ and E(x) is usually denoted by P(x). There are a lot of researches for E(x); the upper bound estimate, the asymptotic behavior of the "continuous mean" $\int_{1}^{x} E(t)^{k} dt$ and the "discrete mean" $\sum_{n \leq x} E(n)^{k}$, etc. In particular, we studied the difference of these two kinds of mean values for $E(x) = \Delta(x)$, P(x) and the error term in the case of Rankin-Selberg series [1, 3, 4].

In our previous paper [2], we derived a certain kind of expressions of a shifted sum of $\Delta(x)$. Here we call a shifted sum of $\Delta(x)$ as a sum of $\Delta(n + \alpha)^k$ over $n \le x$ (see (1.4) below). For example, in the fourth power case we proved that

$$\sum_{n \le x} \Delta(n+\alpha)^4 = \int_1^x \Delta(t)^4 dt + B_1(\alpha) x^{7/4} (A_1 \log x + A_2) + B_2(\alpha) x^{3/2} (A_3 \log^2 x + A_4 \log x + A_5) + O(x^{7/5+\varepsilon})$$
(1.2)

holds with some suitable constants A_j . Here $B_n(x)$ is the *n*th Bernoulli polynomial defined by

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n(x)}{n!} t^n.$$

For example, $B_1(x) = x - \frac{1}{2}$, $B_2(x) = x^2 - x + \frac{1}{6}$ and $B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$. The feature of this formula is that the difference between the shifted sum and the integral is expressed as a linear combination of terms of lower degrees of x with the Bernoulli polynomials as the coefficients. Moreover, we can see that by taking the special α , for example $\alpha = 1/2$, the formula (1.2) gives better approximation to each other than the previous case $\alpha = 0$ [1].

In this paper we shall study the reason why Bernoulli polynomials appear in the shifted sum. For the sake of simplicity we assume, in this paper,

$$g(x) = Ax \tag{1.3}$$

with a certain constant A. There are many arithmetical functions with this property. The most important one is r(n), in which case $A = \pi$. Other examples are $f(n) = \varphi(n)/n$, where $\varphi(n)$ is the Euler totient function, $f(n) = \sigma(n)/n$, where $\sigma(n)$ is the sum of positive divisors of n and f(n) = c(n), where c(n) is the coefficient of Rankin-Selberg series (for the last example see [1]).

To state our theorem, we shall introduce some notations. Let x > 2 be a real number and $0 \le \alpha < 1$. We define the shifted sum by

$$D_k(x,\alpha) = \sum_{n \le x} E(n+\alpha)^k.$$
(1.4)

We write $D_k(x) = D_k(x, 0)$ for short. The "continuous mean value" is customarily formulated by means of the integral $I_k(x)$ (for this definition, see (3.2) below). But, for our purpose, it is convenient to introduce the "modified mean value"

$$\widetilde{I}_{k}(x) = \int_{1}^{[x]+1} E(t)^{k} dt, \qquad (1.5)$$

where [x] is the largest integer not exceeding x. It is important for our theorem to use $\widetilde{I}_k(x)$ instead of $I_k(x)$. We study the relation between $D_k(x, \alpha)$ and $\widetilde{I}_k(x)$ and obtain the following

Theorem. Let E(x) be the function defined by (1.1). If g(x) satisfies (1.3), then we have

$$D_{k}(x,\alpha) = \sum_{j=0}^{k} {\binom{k}{j}} (-A)^{k-j} B_{k-j}(\alpha) \widetilde{I}_{j}(x).$$
(1.6)

Especially we have

$$D_k(x) = \sum_{j=0}^k \binom{k}{j} (-A)^{k-j} B_{k-j} \widetilde{I}_j(x),$$

where $B_n = B_n(0)$ denotes the nth Bernoulli number.

Based on this Theorem, we shall give sharper estimates of the difference between the shifted sum $D_k(x, \alpha)$ and the "continuous mean value" $I_k(x)$ in Section 3.

As in [2], it is also possible to give an interpretation of our Theorem in terms of Dirichlet series whose coefficients are $P(n + \alpha)^k$, but we shall omit it in this paper (cf. [5, 6]).

2 Proof of Theorem

We make use of the method of generating functions. So let X be an indeterminate variable in this section.

Lemma 1. Suppose that g(x) satisfies (1.3). Then we have

$$\sum_{k=0}^{\infty} \frac{D_k(x,\alpha)}{k!} X^k = e^{-A\alpha X} \sum_{k=0}^{\infty} \frac{D_k(x)}{k!} X^k.$$
 (2.1)

Proof. Since g(x) = Ax, we have

$$E(n+\alpha) = E(n) - A\alpha.$$

Hence

$$D_{k}(x,\alpha) = \sum_{n \le x} (E(n) - A\alpha)^{k} = \sum_{n \le x} \sum_{j=0}^{k} \binom{k}{j} E(n)^{j} (-A\alpha)^{k-j}.$$

Interchanging the sums over n and j, we have

$$\frac{D_k(x,\alpha)}{k!} = \sum_{j=0}^k \frac{(-A\alpha)^{k-j}}{(k-j)!} \frac{D_j(x)}{j!}.$$
(2.2)

Since $e^{-A\alpha X} = \sum_{m=0}^{\infty} \frac{(-A\alpha)^m}{m!} X^m$, the right-hand side of (2.2) coincides with the coefficient of X^k of the right-hand side of (2.1). This completes the proof of the lemma.

Lemma 2. Let $\widetilde{I}_k(x)$ be the function defined by (1.5). Then we have

$$\sum_{k=0}^{\infty} \frac{\widetilde{I}_k(x)}{k!} X^k = \frac{e^{-AX} - 1}{-AX} \sum_{k=0}^{\infty} \frac{D_k(x)}{k!} X^k.$$
(2.3)

Proof. In order to prove (2.3), we recall a formula proved in our previous paper [1]. In Lemma 1 of [1], we showed that (in the notation there)

$$\sum_{n \le x} E(n)^k - \int_1^x E(t)^k dt = \sum_{j=0}^{k-1} \binom{k}{j} (-1)^{k-j+1} \sum_{n \le x} E(n)^j \int_n^{n+1} (g(t) - g(n))^{k-j} dt + \int_x^{[x]+1} E(t)^k dt.$$
(2.4)

We specialize g(x) = Ax in (2.4). Then (2.4) implies that

$$\widetilde{I}_{k}(x) = \sum_{j=0}^{k} {\binom{k}{j}} \frac{(-A)^{k-j}}{k-j+1} D_{j}(x).$$
(2.5)

Writing (2.5) in the form

$$\frac{\widetilde{I}_k(x)}{k!} = \sum_{j=0}^k \frac{(-A)^{k-j}}{(k-j+1)!} \frac{D_j(x)}{j!}$$

and noting

$$\sum_{k=0}^{\infty} \frac{(-A)^k}{(k+1)!} X^k = \frac{e^{-AX} - 1}{-AX},$$

we get the equality of (2.3).

Proof of Theorem. By (2.1) and (2.3), we have

$$\sum_{k=0}^{\infty} \frac{D_k(x,\alpha)}{k!} X^k = \frac{-AX}{e^{-AX} - 1} \cdot e^{-A\alpha X} \sum_{k=0}^{\infty} \frac{\widetilde{I}_k(x)}{k!} X^k$$
$$= \sum_{k=0}^{\infty} \frac{B_k(\alpha)}{k!} (-AX)^k \sum_{k=0}^{\infty} \frac{\widetilde{I}_k(x)}{k!} X^k.$$
(2.6)

Here we used the definition of Bernoulli polynomials. Now comparing the coefficients of X^k of (2.6), we get the equality (1.6).

It is instructive to write up the identities of Theorem for small k:

$$\begin{split} D_1(x,\alpha) &= \tilde{I}_1(x) - AB_1(\alpha)[x], \\ D_2(x,\alpha) &= \tilde{I}_2(x) - 2AB_1(\alpha)\tilde{I}_1(x) + A^2B_2(\alpha)[x], \\ D_3(x,\alpha) &= \tilde{I}_3(x) - 3AB_1(\alpha)\tilde{I}_2(x) + 3A^2B_2(\alpha)\tilde{I}_1(x) - A^3B_3(\alpha)[x], \\ D_4(x,\alpha) &= \tilde{I}_4(x) - 4AB_1(\alpha)\tilde{I}_3(x) + 6A^2B_2(\alpha)\tilde{I}_2(x) - 4A^3B_3(\alpha)\tilde{I}_1(x) \\ &+ A^4B_4(\alpha)[x], \\ D_5(x,\alpha) &= \tilde{I}_5(x) - 5AB_1(\alpha)\tilde{I}_4(x) + 10A^2B_2(\alpha)\tilde{I}_3(x) - 10A^3B_3(\alpha)\tilde{I}_2(x) \\ &+ 5A^4B_4(\alpha)\tilde{I}_1(x) - A^5B_5(\alpha)[x]. \end{split}$$

We note that the formula (1.6) can be regarded as a kind of inversion formula. It may be interesting from the viewpoint on combinatorial theory.

3 Mean values of the function related with P(x)

In this section we consider the case of the Gauss circle problem. Hence f(n) = r(n) defined in Introduction. Then $g(x) = \pi x$ and E(x) = P(x).

The upper bound of P(x) has been studied for a long time. Let λ_0 be the number defined by

$$\lambda_0 = \inf\{\lambda \mid P(x) = O(x^\lambda)\}.$$
(3.1)

The first non-trivial result is $\lambda_0 \leq 1/3$, which is due to Sierpiński in 1906. It is known that $\lambda_0 \leq (k+l)/(2k+2)$, where (k,l) is any exponent pair (see Graham and Kolesnik [7]). For instance, the exponent pair (k,l) = (97/251, 132/251) gives $\lambda_0 \leq 229/696 = 0.32902...$ The best estimate up to now is $\lambda_0 \leq 131/416 = 0.3149...$ due to Huxley [8]. It is known that $\lambda_0 \geq 1/4$ and is conjectured that $\lambda_0 = 1/4$. For more details for P(x), see Graham and Kolesnik [7] and Krätzel [11].

As stated in Introduction, the "continuous mean value" estimate is usually formulated by means of the integral

$$I_k(x) = \int_1^x P(t)^k dt.$$
 (3.2)

Note that the upper limit of $I_k(x)$ is x, while that of $I_k(x)$ is [x] + 1, hence

$$\widetilde{I}_k(x) - I_k(x) = \int_x^{[x]+1} P(t)^k dt = O(x^{k\lambda_0 + \varepsilon}),$$
(3.3)

where λ_0 is defined by (3.1). By this trivial estimate we can replace the terms $\tilde{I}_k(x)$ in Theorem by $I_k(x)$.

We shall recall some basic results on this integral:

$$I_1(x) = -x - \frac{x^{3/4}}{\pi^2} \sum_{n=1}^{\infty} \frac{r(n)}{n^{5/4}} \sin(2\pi\sqrt{nx} + \frac{\pi}{4}) + O(x^{1/4}),$$
(3.4)

and

$$I_k(x) = C_k x^{1+k/4} + Q_k(x)$$
(3.5)

for $2 \le k \le 9$, where C_k are certain positive constants and $Q_k(x)$ are error terms. Recently Lau and Tsang proved that $Q_2(x) = O(x \log x \log \log x)$ [13]. For $3 \le k \le 9$, $Q_k(x) = O(x^{\rho_k + \varepsilon})$ are known with $\rho_3 = 7/5$, $\rho_4 = 53/28$, $\rho_5 = 177/80$, $\rho_6 = 5910/2371$, $\rho_7 = 17341/6312$, $\rho_8 = 28291/9433$ and $\rho_9 = 244439/75216$ [10, 14, 15, 16]. In their paper [12], Lau and Tsang studied the error term of the mean square in the case of the Dirichlet divisor problem and proposed a conjecture on the behavior of this error term. Though they did not mention explicitly the corresponding conjecture in the case of the circle problem, it is plausible to conjecture that

$$Q_2(x) = cx \log x + O(x) \tag{3.6}$$

for some constant c. (It may be possible that c is zero.)

For much higher cases $k \ge 10$, no asymptotic estimates for $I_k(x)$ are known. However, it is known that

$$I_K(x) \ll x^{\frac{35K+38}{108}+\varepsilon}$$
 for any real $K \ge 35/4$, (3.7)

(see Ivić [9, Theorem 13.12]).

As we stated in Introduction, the difference $D_k(x) - I_k(x)$ was treated in [1, 3, 4] in details. These formulas can be regarded as the approximations of $I_k(x)$ by means of $D_k(x)$, From our Theorem, we get similar approximations of $I_k(x)$ by means of the shifted sum as in [2]. In fact, by (1.6), (3.4), (3.5) and (3.3) we get the following corollary.

Corollary 1. Let α be any real number such that $0 \le \alpha < 1$. Then we have

$$D_{1}(x,\alpha) = I_{1}(x) - \pi B_{1}(\alpha)x + O(x^{\lambda_{0}+\varepsilon}),$$

$$D_{2}(x,\alpha) = I_{2}(x) + (2\pi B_{1}(\alpha) + \pi^{2}B_{2}(\alpha))x + O(x^{3/4}),$$

$$D_{3}(x,\alpha) = I_{3}(x) - 3\pi B_{1}(\alpha)C_{2}x^{3/2} + O(x\log x\log\log x),$$

$$D_{4}(x,\alpha) = I_{4}(x) - 4\pi B_{1}(\alpha)C_{3}x^{7/4} + 6\pi^{2}B_{2}(\alpha)C_{2}x^{3/2} + O(x^{7/5+\varepsilon}),$$

$$D_{k}(x,\alpha) = I_{k}(x) - k\pi B_{1}(\alpha)C_{k-1}x^{(k+3)/4} + O(x^{\rho_{k-1}+\varepsilon})$$
(3.8)

for $5 \le k \le 10$. If we assume (3.6) we have

$$D_3(x,\alpha) = I_3(x) - 3\pi B_1(\alpha)C_2 x^{3/2} - 3\pi B_1(\alpha)cx\log x + O(x).$$

If ρ_k ($4 \le k \le 9$) are improved, then the estimate of (3.8) may be improved automatically. We note that when $\alpha = 0$ these results are already obtained by [3, 1].

If we specialize the value α , we may get better approximations of $I_k(x)$ by $D_k(x, \alpha)$. In fact it is easily seen that if we set $\alpha = 1/2$, the second term on the right-hand side of each formula of Corollary 1 becomes zero. More precisely we have

Corollary 2.

$$D_1(x, 1/2) = I_1(x) + O(x^{\lambda_0 + \varepsilon}),$$

$$D_2(x, 1/2) = I_2(x) - \frac{\pi^2}{12}x + O(x^{2\lambda_0 + \varepsilon}),$$

$$D_3(x, 1/2) = I_3(x) + \frac{\pi^2}{4}x + O(x^{3\lambda_0 + \varepsilon}),$$

$$D_4(x, 1/2) = I_4(x) - \frac{\pi^2}{2}C_2x^{3/2} + O(x^{4\lambda_0 + \varepsilon})$$

For $5 \le k \le 11$ we have

$$D_k(x, 1/2) = I_k(x) - \frac{k(k-1)\pi^2}{24} C_{k-2} x^{\frac{k+2}{4}} + O(x^{k\lambda_0 + \varepsilon}) + O(x^{\rho_{k-2} + \varepsilon}).$$

Proof. Noting $B_1(1/2) = 0$ and $B_3(1/2) = 0$, the expressions $D_k(x, 1/2)$ are obtained directly for k = 1, 2 and 3. For $4 \le k \le 11$, we have

$$D_k(x, 1/2) = \widetilde{I}_k(x) + \binom{k}{2} \pi^2 B_2(1/2) \widetilde{I}_{k-2}(x) + O(|\widetilde{I}_{k-4}(x)|).$$

We note that

$$\widetilde{I}_{k-2}(x) = I_{k-2}(x) + O(x^{(k-2)\lambda_0 + \varepsilon}) = C_{k-2}x^{\frac{k+2}{4}} + O(x^{\rho_{k-2} + \varepsilon}) + O(x^{(k-2)\lambda_0 + \varepsilon}).$$

Hence we have

$$D_k(x, 1/2) = I_k(x) - \frac{k(k-1)\pi^2}{24} C_{k-2} x^{\frac{k+2}{4}} + O(x^{k\lambda_0 + \varepsilon}) + O(x^{\rho_{k-2} + \varepsilon}).$$

In order to get better approximations, we may consider the average of the shifted sum like

$$T_k(x) = \sum_{n \le x} \frac{P(n+\beta)^k + P(n+\beta')^k}{2},$$
(3.9)

where β and β' are the roots of the equation $B_2(x) = 0$ as we have already considered in [2]. Since

$$B_j(\beta) + B_j(\beta') = 0$$

for j = 1, 2 and 3 simultaneously, we have the following approximation.

Corollary 3. Let $T_k(x)$ be the function defined by (3.9). Then we have

$$T_k(x) = I_k(x) + O(x^{k\lambda_0 + \varepsilon})$$
(3.10)

for $2 \le k \le 13$ and

$$T_k(x) = I_k(x) + O(x^{k\lambda_0 + \varepsilon}) + O(x^{\frac{35k - 102}{108} + \varepsilon})$$
(3.11)

for $k \geq 14$.

Proof. For $k \le 5$, the estimates (3.10) are obtained directly. For $k \ge 6$, we have

$$T_{k}(x) = I_{k}(x) + O(x^{k\lambda_{0}+\varepsilon}) + O(|\tilde{I}_{k-4}(x)|).$$
(3.12)

But we have $|\tilde{I}_{k-4}(x)| \ll x^{k/4} \ll x^{k\lambda_0}$ for $k \leq 13$, hence we get (3.10). The formula (3.11) follows from (3.12) and (3.7).

Finally we should note that the shifted sums $D_k(x, \alpha)$ and $T_k(x)$ can be regarded as better approximations for $I_k(x)$ by the formulas in Corollaries 1–3.

References

 Cao, X., J. Furuya, Y. Tanigawa, W. Zhai. On the differences between two kinds of mean value formulas of number-theoretic error terms. *Int. J. Number Theory*, DOI: 10.1142/S1793042114500195.

- [2] Cao, X., J. Furuya, Y. Tanigawa, W. Zhai. On the mean of the shifted error term in the theory of the Dirichlet divisor problem, to appear in "*Rocky Mountain J. Math.*".
- [3] Furuya, J. On the average orders of the error term in the circle problem. *Publ. Math. Debrecen*, Vol. 67, 2005, 381–400.
- [4] Furuya, J. On the average orders of the error term in the Dirichlet divisor problem. J. Number Theory, Vol. 115, 2005, 1–26.
- [5] Furuya, J., Y. Tanigawa. On integrals and Dirichlet series obtained from the error term in the circle problem, to appear in *"Funct. Approx. Comment. Math."*.
- [6] Furuya, J., Y. Tanigawa, W. Zhai. Dirichlet series obtained from the error term in the Dirichlet divisor problem. *Monatsh. Math.*, Vol. 160, 2010, 385–402.
- [7] Graham, S. W., G. Kolesnik, Van der Corput's Method of Exponential Sums, London Math. Soc. Lect. Note Series, Vol. 126, Cambridge University Press, 1991.
- [8] Huxley, M. N. Exponential sums and lattice points III. *Proc. London Math. Soc.*, Vol. 87, 2003, 591–609.
- [9] Ivić, A. *The Riemann Zeta-Function*, John Wiley & Sons, New York, 1985 (2nd ed., Dover, Mineola, NY, 2003).
- [10] Ivić, A., P. Sargos. On the higher moments of the error term in the divisor problem. *Illinois* J. Math., Vol. 51, 2007, 353–377.
- [11] Krätzel, E. Lattice Points, Kluwer Academic Publishers, Dordrecht, 1988.
- [12] Lau, Y. K., K. M. Tsang. Mean square of the remainder term in the Dirichlet divisor problem. J. Théorie Nombres Bordeaux, Vol. 7, 1995, 75–92.
- [13] Lau, Y. K., K. M. Tsang. On the mean square formula of the error term in the Dirichlet divisor problem. *Math. Proc. Cambridge Phil. Soc.*, Vol. 146, 2009, 277–287.
- [14] Zhai, W. On higher-power moments of $\Delta(x)$ II. Acta Arith., Vol. 114, 2004, 35–54.
- [15] Zhai, W. On higher-power moments of $\Delta(x)$ III. Acta Arith., Vol. 118, 2005, 263–281.
- [16] Zhang, D., W. Zhai, On the fifth-power moment of $\Delta(x)$. Int. J. Number Theory, Vol. 7, 2011, 71–86.