
Notes on Number Theory and Discrete Mathematics
ISSN 1310–5132
Vol. 20, 2014, No. 2, 44–51

Mean values of the error term
with shifted arguments in the circle problem
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Abstract: In this paper, we show the relation between the shifted sum of a number-theoretic error
term and its continuous mean (integral). We shall obtain a certain expression of the shifted sum as
a linear combination of the continuous mean with the Bernoulli polynomials as their coefficients.
As an application of our theorem, we give better approximations of the continuous mean by a
shifted sum.
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1 Introduction

Let f(n) be an arithmetical function and let E(x) be the number-theoretic error term defined by

E(x) =
∑
n≤x

f(n)− g(x), (1.1)
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where g(x) is the main term of the summatory function of f(n), which is usually written by
infinitely differentiable elementary functions. When f(n) = d(n), the number of positive divisors
of n, then g(x) = x(log x + 2γ − 1) (γ being the Euler constant) and E(x) is usually denoted
by ∆(x). On the other hand when f(n) = r(n), the number of ways to write n as a sum of
two squares of integers, then g(x) = πx and E(x) is usually denoted by P (x). There are a lot of
researches forE(x); the upper bound estimate, the asymptotic behavior of the “continuous mean”∫ x
1
E(t)kdt and the “discrete mean”

∑
n≤xE(n)k, etc. In particular, we studied the difference of

these two kinds of mean values for E(x) = ∆(x), P (x) and the error term in the case of Rankin-
Selberg series [1, 3, 4].

In our previous paper [2], we derived a certain kind of expressions of a shifted sum of ∆(x).
Here we call a shifted sum of ∆(x) as a sum of ∆(n + α)k over n ≤ x (see (1.4) below). For
example, in the fourth power case we proved that∑

n≤x

∆(n+ α)4 =

∫ x

1

∆(t)4dt+B1(α)x7/4(A1 log x+ A2)

+B2(α)x3/2(A3 log2 x+ A4 log x+ A5) +O(x7/5+ε) (1.2)

holds with some suitable constants Aj . Here Bn(x) is the nth Bernoulli polynomial defined by

text

et − 1
=
∞∑
n=0

Bn(x)

n!
tn.

For example, B1(x) = x− 1
2
, B2(x) = x2 − x + 1

6
and B3(x) = x3 − 3

2
x2 + 1

2
x. The feature of

this formula is that the difference between the shifted sum and the integral is expressed as a linear
combination of terms of lower degrees of x with the Bernoulli polynomials as the coefficients.
Moreover, we can see that by taking the special α, for example α = 1/2, the formula (1.2) gives
better approximation to each other than the previous case α = 0 [1].

In this paper we shall study the reason why Bernoulli polynomials appear in the shifted sum.
For the sake of simplicity we assume, in this paper,

g(x) = Ax (1.3)

with a certain constant A. There are many arithmetical functions with this property. The most
important one is r(n), in which case A = π. Other examples are f(n) = ϕ(n)/n, where ϕ(n) is
the Euler totient function, f(n) = σ(n)/n, where σ(n) is the sum of positive divisors of n and
f(n) = c(n), where c(n) is the coefficient of Rankin-Selberg series (for the last example see [1]).

To state our theorem, we shall introduce some notations. Let x > 2 be a real number and
0 ≤ α < 1. We define the shifted sum by

Dk(x, α) =
∑
n≤x

E(n+ α)k. (1.4)

We write Dk(x) = Dk(x, 0) for short. The “continuous mean value” is customarily formulated
by means of the integral Ik(x) (for this definition, see (3.2) below). But, for our purpose, it is
convenient to introduce the “modified mean value”

Ĩk(x) =

∫ [x]+1

1

E(t)kdt, (1.5)
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where [x] is the largest integer not exceeding x. It is important for our theorem to use Ĩk(x)

instead of Ik(x). We study the relation between Dk(x, α) and Ĩk(x) and obtain the following

Theorem. Let E(x) be the function defined by (1.1). If g(x) satisfies (1.3), then we have

Dk(x, α) =
k∑
j=0

(
k

j

)
(−A)k−jBk−j(α)Ĩj(x). (1.6)

Especially we have

Dk(x) =
k∑
j=0

(
k

j

)
(−A)k−jBk−j Ĩj(x),

where Bn = Bn(0) denotes the nth Bernoulli number.

Based on this Theorem, we shall give sharper estimates of the difference between the shifted
sum Dk(x, α) and the “continuous mean value” Ik(x) in Section 3.

As in [2], it is also possible to give an interpretation of our Theorem in terms of Dirichlet
series whose coefficients are P (n+ α)k, but we shall omit it in this paper (cf. [5, 6]).

2 Proof of Theorem

We make use of the method of generating functions. So let X be an indeterminate variable in this
section.

Lemma 1. Suppose that g(x) satisfies (1.3). Then we have

∞∑
k=0

Dk(x, α)

k!
Xk = e−AαX

∞∑
k=0

Dk(x)

k!
Xk. (2.1)

Proof. Since g(x) = Ax, we have

E(n+ α) = E(n)− Aα.

Hence

Dk(x, α) =
∑
n≤x

(E(n)− Aα)k =
∑
n≤x

k∑
j=0

(
k

j

)
E(n)j(−Aα)k−j.

Interchanging the sums over n and j, we have

Dk(x, α)

k!
=

k∑
j=0

(−Aα)k−j

(k − j)!
Dj(x)

j!
. (2.2)

Since e−AαX =
∑∞

m=0
(−Aα)m

m!
Xm, the right-hand side of (2.2) coincides with the coefficient of

Xk of the right-hand side of (2.1). This completes the proof of the lemma.
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Lemma 2. Let Ĩk(x) be the function defined by (1.5). Then we have
∞∑
k=0

Ĩk(x)

k!
Xk =

e−AX − 1

−AX

∞∑
k=0

Dk(x)

k!
Xk. (2.3)

Proof. In order to prove (2.3), we recall a formula proved in our previous paper [1]. In Lemma 1
of [1], we showed that (in the notation there)∑

n≤x

E(n)k −
∫ x

1

E(t)kdt =
k−1∑
j=0

(
k

j

)
(−1)k−j+1

∑
n≤x

E(n)j
∫ n+1

n

(g(t)− g(n))k−jdt

+

∫ [x]+1

x

E(t)kdt. (2.4)

We specialize g(x) = Ax in (2.4). Then (2.4) implies that

Ĩk(x) =
k∑
j=0

(
k

j

)
(−A)k−j

k − j + 1
Dj(x). (2.5)

Writing (2.5) in the form
Ĩk(x)

k!
=

k∑
j=0

(−A)k−j

(k − j + 1)!

Dj(x)

j!

and noting
∞∑
k=0

(−A)k

(k + 1)!
Xk =

e−AX − 1

−AX
,

we get the equality of (2.3).

Proof of Theorem. By (2.1) and (2.3), we have
∞∑
k=0

Dk(x, α)

k!
Xk =

−AX
e−AX − 1

· e−AαX
∞∑
k=0

Ĩk(x)

k!
Xk

=
∞∑
k=0

Bk(α)

k!
(−AX)k

∞∑
k=0

Ĩk(x)

k!
Xk. (2.6)

Here we used the definition of Bernoulli polynomials. Now comparing the coefficients of Xk of
(2.6), we get the equality (1.6).

It is instructive to write up the identities of Theorem for small k:

D1(x, α) = Ĩ1(x)− AB1(α)[x],

D2(x, α) = Ĩ2(x)− 2AB1(α)Ĩ1(x) + A2B2(α)[x],

D3(x, α) = Ĩ3(x)− 3AB1(α)Ĩ2(x) + 3A2B2(α)Ĩ1(x)− A3B3(α)[x],

D4(x, α) = Ĩ4(x)− 4AB1(α)Ĩ3(x) + 6A2B2(α)Ĩ2(x)− 4A3B3(α)Ĩ1(x)

+ A4B4(α)[x],

D5(x, α) = Ĩ5(x)− 5AB1(α)Ĩ4(x) + 10A2B2(α)Ĩ3(x)− 10A3B3(α)Ĩ2(x)

+ 5A4B4(α)Ĩ1(x)− A5B5(α)[x].
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We note that the formula (1.6) can be regarded as a kind of inversion formula. It may be
interesting from the viewpoint on combinatorial theory.

3 Mean values of the function related with P (x)

In this section we consider the case of the Gauss circle problem. Hence f(n) = r(n) defined in
Introduction. Then g(x) = πx and E(x) = P (x).

The upper bound of P (x) has been studied for a long time. Let λ0 be the number defined by

λ0 = inf{λ | P (x) = O(xλ)}. (3.1)

The first non-trivial result is λ0 ≤ 1/3, which is due to Sierpiński in 1906. It is known that
λ0 ≤ (k + l)/(2k + 2), where (k, l) is any exponent pair (see Graham and Kolesnik [7]). For
instance, the exponent pair (k, l) = (97/251, 132/251) gives λ0 ≤ 229/696 = 0.32902 . . .. The
best estimate up to now is λ0 ≤ 131/416 = 0.3149 . . . due to Huxley [8]. It is known that
λ0 ≥ 1/4 and is conjectured that λ0 = 1/4. For more details for P (x), see Graham and Kolesnik
[7] and Krätzel [11].

As stated in Introduction, the “continuous mean value” estimate is usually formulated by
means of the integral

Ik(x) =

∫ x

1

P (t)kdt. (3.2)

Note that the upper limit of Ik(x) is x, while that of Ĩk(x) is [x] + 1, hence

Ĩk(x)− Ik(x) =

∫ [x]+1

x

P (t)kdt = O(xkλ0+ε), (3.3)

where λ0 is defined by (3.1). By this trivial estimate we can replace the terms Ĩk(x) in Theorem
by Ik(x).

We shall recall some basic results on this integral:

I1(x) = −x− x3/4

π2

∞∑
n=1

r(n)

n5/4
sin(2π

√
nx+

π

4
) +O(x1/4), (3.4)

and

Ik(x) = Ckx
1+k/4 +Qk(x) (3.5)

for 2 ≤ k ≤ 9, where Ck are certain positive constants and Qk(x) are error terms. Recently Lau
and Tsang proved that Q2(x) = O(x log x log log x) [13]. For 3 ≤ k ≤ 9, Qk(x) = O(xρk+ε)

are known with ρ3 = 7/5, ρ4 = 53/28, ρ5 = 177/80, ρ6 = 5910/2371, ρ7 = 17341/6312, ρ8 =

28291/9433 and ρ9 = 244439/75216 [10, 14, 15, 16]. In their paper [12], Lau and Tsang studied
the error term of the mean square in the case of the Dirichlet divisor problem and proposed a
conjecture on the behavior of this error term. Though they did not mention explicitly the corre-
sponding conjecture in the case of the circle problem, it is plausible to conjecture that

Q2(x) = cx log x+O(x) (3.6)
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for some constant c. (It may be possible that c is zero.)
For much higher cases k ≥ 10, no asymptotic estimates for Ik(x) are known. However, it is

known that
IK(x)� x

35K+38
108

+ε for any real K ≥ 35/4, (3.7)

(see Ivić [9, Theorem 13.12]).
As we stated in Introduction, the difference Dk(x) − Ik(x) was treated in [1, 3, 4] in details.

These formulas can be regarded as the approximations of Ik(x) by means of Dk(x), From our
Theorem, we get similar approximations of Ik(x) by means of the shifted sum as in [2]. In fact,
by (1.6), (3.4), (3.5) and (3.3) we get the following corollary.

Corollary 1. Let α be any real number such that 0 ≤ α < 1. Then we have

D1(x, α) = I1(x)− πB1(α)x+O(xλ0+ε),

D2(x, α) = I2(x) +
(
2πB1(α) + π2B2(α)

)
x+O(x3/4),

D3(x, α) = I3(x)− 3πB1(α)C2x
3/2 +O(x log x log log x),

D4(x, α) = I4(x)− 4πB1(α)C3x
7/4 + 6π2B2(α)C2x

3/2 +O(x7/5+ε),

Dk(x, α) = Ik(x)− kπB1(α)Ck−1x
(k+3)/4 +O(xρk−1+ε) (3.8)

for 5 ≤ k ≤ 10. If we assume (3.6) we have

D3(x, α) = I3(x)− 3πB1(α)C2x
3/2 − 3πB1(α)cx log x+O(x).

If ρk (4 ≤ k ≤ 9) are improved, then the estimate of (3.8) may be improved automatically.
We note that when α = 0 these results are already obtained by [3, 1].

If we specialize the value α, we may get better approximations of Ik(x) by Dk(x, α). In fact
it is easily seen that if we set α = 1/2, the second term on the right-hand side of each formula of
Corollary 1 becomes zero. More precisely we have

Corollary 2.

D1(x, 1/2) = I1(x) +O(xλ0+ε),

D2(x, 1/2) = I2(x)− π2

12
x+O(x2λ0+ε),

D3(x, 1/2) = I3(x) +
π2

4
x+O(x3λ0+ε),

D4(x, 1/2) = I4(x)− π2

2
C2x

3/2 +O(x4λ0+ε).

For 5 ≤ k ≤ 11 we have

Dk(x, 1/2) = Ik(x)− k(k − 1)π2

24
Ck−2x

k+2
4 +O(xkλ0+ε) +O(xρk−2+ε).

Proof. Noting B1(1/2) = 0 and B3(1/2) = 0, the expressions Dk(x, 1/2) are obtained directly
for k = 1, 2 and 3. For 4 ≤ k ≤ 11, we have

Dk(x, 1/2) = Ĩk(x) +

(
k

2

)
π2B2(1/2)Ĩk−2(x) +O(|Ĩk−4(x)|).
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We note that

Ĩk−2(x) = Ik−2(x) +O(x(k−2)λ0+ε)

= Ck−2x
k+2
4 +O(xρk−2+ε) +O(x(k−2)λ0+ε).

Hence we have

Dk(x, 1/2) = Ik(x)− k(k − 1)π2

24
Ck−2x

k+2
4 +O(xkλ0+ε) +O(xρk−2+ε).

In order to get better approximations, we may consider the average of the shifted sum like

Tk(x) =
∑
n≤x

P (n+ β)k + P (n+ β′)k

2
, (3.9)

where β and β′ are the roots of the equation B2(x) = 0 as we have already considered in [2].
Since

Bj(β) +Bj(β
′) = 0

for j = 1, 2 and 3 simultaneously, we have the following approximation.

Corollary 3. Let Tk(x) be the function defined by (3.9). Then we have

Tk(x) = Ik(x) +O(xkλ0+ε) (3.10)

for 2 ≤ k ≤ 13 and

Tk(x) = Ik(x) +O(xkλ0+ε) +O(x
35k−102

108
+ε) (3.11)

for k ≥ 14.

Proof. For k ≤ 5, the estimates (3.10) are obtained directly. For k ≥ 6, we have

Tk(x) = Ik(x) +O(xkλ0+ε) +O(|Ĩk−4(x)|). (3.12)

But we have |Ĩk−4(x)| � xk/4 � xkλ0 for k ≤ 13, hence we get (3.10). The formula (3.11)
follows from (3.12) and (3.7).

Finally we should note that the shifted sums Dk(x, α) and Tk(x) can be regarded as better
approximations for Ik(x) by the formulas in Corollaries 1–3.
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[10] Ivić, A., P. Sargos. On the higher moments of the error term in the divisor problem. Illinois
J. Math., Vol. 51, 2007, 353–377.

[11] Krätzel, E. Lattice Points, Kluwer Academic Publishers, Dordrecht, 1988.

[12] Lau, Y. K., K. M. Tsang. Mean square of the remainder term in the Dirichlet divisor problem.
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