Notes on Number Theory and Discrete Mathematics ISSN 1310–5132 Vol. 20, 2014, No. 2, 35–43

An explicit estimate for the Barban and Vehov weights

Djamel Berkane

Department of Mathematics University of Blida, Algeria e-mail: djaber72@univ-blida.dz

Abstract: We show that

$$\sum_{1 \le n \le N} \left(\sum_{d|n} \lambda_d\right)^2 / n \ll \frac{\log N}{\log z},$$

where λ_d is a real valued arithmetic function called the Barban and Vehov weight and we give an explicit version of a Theorem of Barban and Vehov which has applications to zero-density theorems.

Keywords: Explicit estimates, Möbius function, Selberg sieve.

AMS Classification: Primary: 11N37; Secondary: 11N35, 11N05

1 Introduction

While studying an optimisation problem close to the one that classical initial founding of the Selberg sieve for prime numbers, Barban and Vehov in [1] noticed the property, valid for $N \ge z > 1$

$$\sum_{1 \le n \le N} \left(\sum_{\substack{d \mid n, \\ d \le z}} \mu(d) \frac{\log(z/d)}{\log z} \right)^2 \ll N/\log z.$$

The novelty of this estimate is that no additionnal $+\mathcal{O}(z^2)$ arises, as it does when using a direct approach. This enables us to avoid the condition $N \ge z^2 \log(z)$. One of the consequences of this estimate is the result

$$\sum_{n\geq 1} \Big(\sum_{\substack{d\mid n,\\d\leq z}} \mu(d) \frac{\log(z/d)}{\log z}\Big)^2 / n^\omega = \mathcal{O}_c(1),$$

valid for any constant c > 0 and provided that $\omega \ge 1 + c(\log z)^{-1}$. This estimation would be sufficient to be valid for a fixed constant c > 0.

The second novelty in (Barban and Vehov, 1968) comes from the fact that they consider the weights

$$\lambda_d = \begin{cases} \mu(d) & \text{when } d \le z, \\ \mu(d) \frac{\log(z^2/d)}{\log z} & \text{when } z \le d \le z^2, \\ 0 & \text{when } d > z^2. \end{cases}$$
(1)

they consider in fact slightly more general weights with a y instead of the z^2 that we use here. They proved that

$$\sum_{1 \le n \le N} \left(\sum_{d|n} \lambda_d\right)^2 \ll \frac{N}{\log(y/z)}.$$

They sketched a proof and later proofs were given later by Motohashi [8] (see Motohashi [10, section 1.3]) and Graham [5]. The estimate above has been used by Motohashi [9] and Jutila [7] to prove zero-density theorem for *L*-functions which are sensitive near $\sigma = 1$. In this present work, we propose to give via a classical elementary proof, an explicit version of a Theorem of Barban and Vehov jointly with a similar result for the quantity:

$$\sum_{1 \le n \le N} \left(\sum_{d|n} \lambda_d\right)^2 / n.$$

Our main theorem is the following

Theorem 1.1. When $N \ge z > 1$, we have

$$\sum_{1 \le n \le N} \left(\sum_{d|n} \lambda_d\right)^2 / n \ll \frac{\log N}{\log z}.$$

When $N \leq z$, the sum simply vanishes for every summand does and the constant implied by the \ll -symbol is explicitly given.

Notation

We denote by $\tau(n)$ the number of (positive) divisors of n, and we use here the notation $f = \mathcal{O}^*(g)$ to mean that $|f| \leq g$.

2 Arithmetical lemmas

Let us begin by giving the following general version in the estimate of the summatory function of the Möbius function with coprimality restrictions

Lemma 2.1. For any $x \ge 1$, $\varepsilon \ge 0$ and for any integer $r \ge 1$, we have

$$\left|\sum_{\substack{n \le x\\(n,r)=1}} \frac{\mu(n)}{n^{\varepsilon+1}}\right| \le 1.$$

In [6] it is studied the classical case $\varepsilon = 0$.

Proof. First, a direct summation by parts gives us

$$x^{\varepsilon} \sum_{\substack{n \le x \\ (n,r)=1}} \frac{\mu(n)}{n^{\varepsilon+1}} - \sum_{\substack{n \le x \\ (n,r)=1}} \frac{\mu(n)}{n} = \varepsilon x^{\varepsilon} \int_{1}^{x} \Big(\sum_{\substack{n \le t \\ (n,r)=1}} \frac{\mu(n)}{n}\Big) \frac{dt}{t^{\varepsilon+1}}.$$
(2)

So, the Lemma follows on recalling part of [6, Lemma 10.2]

$$|\sum_{\substack{n \le x \\ (n,r)=1}} \mu(n)n^{-1}| \le 1, \ (x \ge 1).$$

Applying the choice $\varepsilon \leq \frac{\log 2}{\log x}$ in (2), let us deduce also the following consequence

$$|x^{\varepsilon} \sum_{\substack{n \le x \\ (n,r)=1}} \frac{\mu(n)}{n^{\varepsilon+1}} - \sum_{\substack{n \le x \\ (n,r)=1}} \frac{\mu(n)}{n}| \le 1,$$

uniformly in x > 1 and r.

Here and below e represents Napier's constant and p a prime number.

Lemma 2.2. For $x \ge 1$, we have

$$\sum_{m \le x} \mu^2(m) / \sqrt{m} \le 1.33 \sqrt{x}.$$

Proof. It suffices to use a summation by parts together with the known result

$$\sum_{m \le x} \mu^2(m) - 6x/\pi^2 = \mathcal{O}^*(0.1333\sqrt{x}).$$

Lemma 2.3.	For p^{ε}	$\leq e^{c}$,	we	have
------------	-----------------------	----------------	----	------

$$\log(1 - \frac{1}{p^{\varepsilon+1}}) - \log(1 - \frac{1}{p}) \le \varepsilon \frac{\log p}{p} + \frac{17/50}{p^2},$$

provided that $c \leq \log(1+1/p)$.

Proof. Setting $t = 1/p^{\varepsilon}$, x = 1/p, we just have to prove that

$$F(x,t) = \log(1-tx) - \log(1-x) + x\log t - \frac{17x^2}{50}$$

is non positive function. The first derivatives on t, show that F(x,t) is not more than F(x, 1/(x+1)), provided that $\varepsilon \leq \log(1+x)/\log(1/x)$, which equivalent to $1/(x+1) \leq t \leq 1$. We conclude the proof after a report that F(x, 1/(x+1)) is non positive if $0 < x \leq 1/2$. \Box

Lemma 2.4. We have for $x \leq 5$

$$\left|\sum_{\substack{n \le x \\ (r,n)=1}} \frac{\mu(n)}{n^{\varepsilon+1}} \log \frac{x}{n}\right| \le 2.3 \frac{r}{\phi(r)}.$$

Proof. Indeed, The best value that the left term can set is $\sum_{n \le 5} \frac{\log(5/n)}{n}$ for (r, 30) = 1. This is no more than 2.3.

Lemma 2.5. We have for x > 1, $x^{\varepsilon} \leq e^{c}$

$$\sum_{n \le x} \sum_{\substack{m \mid n \\ (m,r) = 1}} \frac{\mu(m)}{m^{\varepsilon}} \tau(n/m) \le e^{c+31/200} x \frac{r}{\phi(r)}$$

provided that $c \leq \log(1+1/x)$.

Proof. First, let us remarque that the left hand side is equal and verify

$$x\sum_{n\leq x}\sum_{\substack{m|n\\(m,r)=1}}\frac{\mu(m)}{m^{\varepsilon}}\frac{\tau(n/m)}{x}\leq x\sum_{n\leq x}\sum_{\substack{m|n\\(m,r)=1}}\frac{\mu(m)}{m^{\varepsilon}}\frac{\tau(n/m)}{n}.$$

Now, we write the right inequality as

$$\begin{split} x \prod_{\substack{p \le x, \ \nu \ge 0}} \sum_{\substack{p < x, \ p \mid r}} p^{-\nu} \prod_{\substack{p \le x, \ p \mid r}} [1 + (1 - p^{-\varepsilon})(\sum_{\nu \ge 0} p^{-\nu})] & \le \quad x \prod_{\substack{p \le x, \ p \mid r}} 1/(1 - p^{-\varepsilon - 1}) \prod_{p \le x} \frac{1 - p^{-\varepsilon - 1}}{1 - 1/p} \\ & \le \quad x \prod_{\substack{p \mid r}} \frac{1}{1 - 1/p} \exp(\sum_{p \le x} S(p)), \end{split}$$

where S(p) is the majored quantity in Lemma 2.3. Hence, the Lemma readily follows on taking $\varepsilon \le c(\log x)^{-1}$ and recalling that

$$\sum_{p} \frac{1}{p^2} \le 0.452247421 \text{ and } \sum_{p \le x} \frac{\log x}{x} \le \log(x).$$

On letting c go to 0, we obtain for the classical case $\varepsilon = 0$

$$\frac{1}{x} \sum_{n \le x} \sum_{\substack{m \mid n \\ (m,r) = 1}} \mu(m) \tau(n/m) \le 1.168 \frac{r}{\phi(r)}.$$

At this level, we quote the following result

Lemma 2.6. Let x > 1 be a fixed real parameter and $x^{\varepsilon} \leq e^{1/5}$. We have

$$\left|\sum_{\substack{n \le x \\ (r,n)=1}} \frac{\mu(n)}{n^{\varepsilon+1}} \log \frac{x}{n}\right| \le 2.86 \frac{r}{\phi(r)}.$$

Furthermore, there exists an infinity of squarefree number r such that

$$\max_{x \ge 1} |\sum_{\substack{n \le x \\ (r,n) = 1}} \frac{\mu(n)}{n^{\varepsilon + 1}} \log \frac{x}{n}| \ge e^{-\gamma} \frac{r}{\phi(r)} + o(1).$$

Proof. At first, according to the previous Lemma the choice c = 1/5 is valid when x > 5. So, recalling the explicit upper bound of the average value of divisor function given in [3]

$$\sum_{n \le x} \tau(n) = x \log x + (2\gamma - 1) x + \mathcal{O}^*(0.961x^{\frac{1}{2}}), \quad (x \ge 1),$$

with γ the Euler's constant, let us write for x > 5

$$\sum_{n \le x} \sum_{\substack{m \mid n \\ (m,r)=1}} \frac{\mu(m)}{m^{\varepsilon}} \tau(n/m) = \sum_{\substack{m \le x \\ (m,r)=1}} \frac{\mu(m)}{m^{\varepsilon+1}} \sum_{n \le x/m} \tau(n)$$
$$= x \sum_{\substack{m \le x \\ (m,r)=1}} \frac{\mu(m)}{m^{\varepsilon+1}} \log \frac{x}{m} + (2\gamma - 1)x \sum_{\substack{m \le x \\ (m,r)=1}} \frac{\mu(m)}{m^{\varepsilon+1}}$$
$$+ \mathcal{O}^*(0.961\sqrt{x} \sum_{\substack{m \le x \\ (m,r)=1}} \frac{\mu^2(m)}{m^{\varepsilon+\frac{1}{2}}}).$$

Thus, the upper bound of the previous Lemma and Lemmas 2.1, 2.2, we reach

$$\sum_{\substack{m \le x \\ (m,r)=1}} \frac{\mu(m)}{m^{\varepsilon+1}} \log \frac{x}{m} \le e^{c+31/200} \frac{r}{\phi(r)} + 1.433,$$

for $\varepsilon \leq c(\log x)^{-1}$. The Lemma 2.4 takes care of the small values of x, so we deduce easily.

For the second part, indeed, for any $L \ge 1$ corresponds the squarefree number $r = \prod_{p \le L} p$, which verify $\theta(L) = \log r$. Then

$$\max_{\substack{x \ge 1 \\ (r,n)=1}} \left| \sum_{\substack{n \le x \\ (r,n)=1}} \frac{\mu(n)}{n^{\varepsilon+1}} \log \frac{x}{n} \right| \ge \log \log r + o(1).$$

But

$$\frac{r}{\phi(r)} = \prod_{p \le L} \left(1 - 1/p \right)^{-1} \sim e^{\gamma} \log L \sim e^{\gamma} \log \log r,$$

we conclude the proof.

Lemma 2.7. Let $x \ge 1$ be a fixed real parameter. We have

$$\sum_{n \le x} \frac{\mu^2(n)}{\phi(n)} \le \log x + 1.4709.$$

Proof. It is a result given by [11] for the case d = 1 on the estimation of

$$\sum_{\substack{n \le x, \\ (n,d)=1}} \frac{\mu^2(n)}{\phi(n)}.$$

Lemma 2.8. For $\omega \geq 1$ and r squarefree number, we have

$$\frac{1}{r^{2(\omega-1)}} \prod_{p|r} (p^{\omega} - 1) < \frac{\phi(r)}{r}$$

Proof. Since our product can become

$$r\prod_{p|r}\frac{p^{\omega}-1}{p^{2\omega}},$$

and by the fact that $\frac{p^{\omega}-1}{p^{2\omega}}$ is a decreasing function, which takes its maximum at $\omega = 1$, we deduce easily.

3 Some results connected to weights λ_d

We shall need explicit estimates connected to the weight (1). Let us put

$$\mathcal{L}(y,d) = \begin{cases} \mu(d) \log \frac{y}{d} & \text{if } d \le y, \\ 0 & \text{if not.} \end{cases}$$

We notice that the following decomposition takes place

$$\lambda_d = \left(\mathcal{L}(z^2, d) - \mathcal{L}(z, d) \right) / \log z, \tag{3}$$

who allows to deduct estimations concerning the λ_d of those concerning $\mathcal{L}(y, d)$.

Lemma 3.1. When $0 \le \omega - 1 \le (5 \log y)^{-1}$, the quantity

$$\mathscr{R}(r, y, \omega) = \sum_{d \ge 1} \frac{\mathcal{L}(y, rd)}{(rd)^{\omega}}$$

verify

$$|\mathscr{R}(r, y, \omega)| \le 2.86 \frac{1}{r^{\omega}} \frac{r}{\phi(r)}$$

Proof. Indeed, the Lemma 2.6 and the writing

$$\mathscr{R}(r, y, \omega) = \frac{\mu(r)}{r^{\omega}} \mathcal{R}(r, \frac{y}{r}).$$

where

$$\mathcal{R}(r,x) = \sum_{\substack{d \le x, \\ (d,r)=1}} \frac{\mu(d) \log \frac{x}{d}}{d^{\omega}},$$

give us

$$|\mathcal{R}(r,x)| \le 2.86 \ \frac{r}{\phi(r)},$$

so, the Lemma follows readily.

Let [a, b] the least common multiple of a and b. We note the following:

Lemma 3.2. For any y > 1, we have

$$\sum_{d_1, d_2 \ge 1} \frac{\mathcal{L}(y, d_1) \mathcal{L}(y, d_2)}{\left[d_1, d_2\right]^{\omega}} \le 8.18(\log y + 1.4709),$$

as soon as $0 < \omega - 1 \le (5 \log y)^{-1}$.

Proof. Let us denote by $\mathscr{S}(y,\omega)$ the quantity to evaluate. First, we use Selberg diagonalization process. We start by writing

$$\begin{aligned} \mathscr{S}(y,\omega) &= \sum_{d_1,d_2} \frac{\mathcal{L}(y,d_1)\mathcal{L}(y,d_2)(d_1,d_2)^{\omega}}{d_1^{\omega}d_2^{\omega}} \\ &= \sum_{d_1,d_2} \frac{\mu^2(d_1)\mu^2(d_2)\mathcal{L}(y,d_1)\mathcal{L}(y,d_2)(d_1,d_2)^{\omega}}{d_1^{\omega}d_2^{\omega}} \end{aligned}$$

Now, let us define the function $\Phi_{\omega}(r) = \prod_{p|r} (p^{\omega} - 1)$, so that for r squarefree number, we obtain $r^{\omega} = (\Phi_{\omega} \star 1)(r)$. From this we infer that

$$\begin{split} \mathscr{S}(y,\omega) &= \sum_{r \leq y} \mu^2(r) \varPhi_{\omega}(r) \Big(\sum_{d \geq 1} \frac{\mathcal{L}(y/r,rd)}{(rd)^{\omega}} \Big)^2 \\ &= \sum_{r \leq y} \mu^2(r) \varPhi_{\omega}(r) \mathscr{R}(r,y/r,\omega)^2. \end{split}$$

Thus, by conjugating the Lemmas 2.7, 2.8 and 3.1, the Lemma follows.

Lemma 3.3. For $x \ge y > 1$, we have

$$\sum_{n \le x} \left(\sum_{d|n} \mathcal{L}(y,d) \right)^2 / n \le 10 (\log y + 1.4709) (5\log x + 1).$$

Proof. First, according to the Rankin's method [12, Lemma 2], we can write for any $\varepsilon > 0$

$$\sum_{n \le x} \left(\sum_{d|n} \mathcal{L}(y, d) \right)^2 / n \le \sum_{n \le x} \frac{\left(\sum_{d|n} \mathcal{L}(y, d) \right)^2}{n} \left(\frac{x}{n} \right)^{\varepsilon} \le x^{\varepsilon} \sum_{n \ge 1} \left(\sum_{d|n} \mathcal{L}(y, d) \right)^2 / n^{1+\varepsilon}.$$

Now, we choose $\varepsilon = (5 \log x)^{-1}$ and define $\omega = 1 + \varepsilon$. We expand the square and find that

$$\sum_{n \leq x} \left(\sum_{d|n} \mathcal{L}(y,d) \right)^2 / n \leq x^{\varepsilon} \sum_{d_1,d_2} \frac{\mu^2(d_1)\mu^2(d_2)\mathcal{L}(y,d_1)\mathcal{L}(y,d_2)}{[d_1,d_2]^{1+\varepsilon}} \zeta(1+\varepsilon)$$
$$\leq \mathscr{S}(y,\omega)\zeta(\omega)x^{\varepsilon},$$

where $\mathscr{S}(y,\omega)$ it is the quantity that we have evaluated in the precedent Lemma. Finally, by observing that $x^{\varepsilon} = e^{1/5}$ and taking

$$\zeta(\omega) \le \frac{\omega}{\omega - 1},$$

since ω is real and close to 1 (See[2, Corollary 1] as well as the in [4, Lemma 2.3]), we conclude the proof.

4 **Proof of main Theorem**

We start with the decomposition (3) of λ_d :

$$\lambda_d = \mu(d) \frac{\log(z^2/d)}{\log z} 1_{d \le z^2} - \mu(d) \frac{\log(z/d)}{\log z} 1_{d \le z}$$

Since $|a+b|^2 \leq 2(|a|^2+|b|^2),$ this leads us to

$$(\log z)^{2} \sum_{1 \le n \le N} \left(\sum_{d|n} \lambda_{d}\right)^{2} / n \le 2 \sum_{1 \le n \le N} \left(\sum_{\substack{d|n, \\ d \le z^{2}}} \mu(d) \log \frac{z^{2}}{d}\right)^{2} / n + 2 \sum_{1 \le n \le N} \left(\sum_{\substack{d|n, \\ d \le z}} \mu(d) \log \frac{z}{d}\right)^{2} / n.$$

Finally, by applying the precedent Lemma for each summand, we get then

$$\sum_{1 \le n \le N} \left(\sum_{d|n} \lambda_d\right)^2 / n \le 60 \ \frac{\log z + 1}{(\log z)^2} (5\log N + 1),$$

when $N \ge z > 1$. The Theorem follows.

5 An explicit Theorem of Barban and Vehov

We can also explicitly obtain the following Lemma:

Lemma 5.1. For x > 1 and $\omega \ge 1 + c(\log x)^{-1}$, we have

$$\sum_{n\geq 1} \left(\sum_{d\mid n} \mathcal{L}(x,d)\right)^2 / n^{\omega} \ll_c (\log x)^2,$$

provided that $c \leq \log(1 + 1/x)$.

Proof. We just have to treat the case $\omega = 1 + c(\log x)^{-1}$. Following the notations and the same first steps in proof of Lemma 3.3, we find that

$$\sum_{n\geq 1} \left(\sum_{d\mid n} \mathcal{L}(x,d)\right)^2 / n^{\omega} \leq \mathscr{S}(x,\omega)\zeta(\omega).$$

Thus, applying Lemma 3.2 and using $\zeta(\omega) \leq \frac{\omega}{\omega - 1}$, give the result.

42

This Lemma yields readily the next one

Theorem 5.1 (Barban and Vehov). For x > 1, we have

$$\sum_{n\geq 1} \left(\sum_{d\mid n} \lambda_d\right)^2 / n^\omega \ll_c 1,$$

as soon as $\omega \ge 1 + c(\log x)^{-1}$ *and* $c \le \log(1 + 1/x)$ *.*

Proof. It is enough to use the decomposition (3) and the precedent Lemma on each summand which appears. \Box

References

- [1] Barban, M. B., P. P. Vehov, An extremal problem, *Trudy Moskov. Math.*, Vol. 18, 1968, 83–90.
- [2] Bastien, G., M. Rogalski, Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques, *Canad. J. Math.*, Vol. 54, 2002, No. 5, 916–944.
- [3] Berkane, D., O. Bordellès, O. Ramaré, Explicit upper bound for the remainder term in the divisor problem, *Math. Comp.*, Vol. 278(81), 2012, 1025–1051.
- [4] Ford, K. Zero-free regions for the Riemann zeta function, *Proceeding of the Millenial Conference on Number Theory*, Urbana, IL., 2000.
- [5] Graham, S. W. An asymptotic estimate related to Selberg's sieve, *J. Number Theory*, Vol. 10, 1978, 83–94.
- [6] Granville, A., O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, *Mathematika*, Vol. 43, 1996, No. 1, 1996, 73–107.
- [7] Jutila, M. On Linnik's constant, *Math. Scand.*, Vol. 41, 1977a, No. 1, 45–62.
- [8] Motohashi, Y. On a problem in the theory of sieve methods. *Res. Inst. Math. Sci. Kyoto Univ. Kökyüroko*, Vol. 222 (1974), 9–50 (in Japanese).
- [9] Motohashi, Y. On a density theorem of Linnik, *Proc. Japan Acad.*, Vol. 51, 1975, 815–817.
- [10] Motohashi, Y. Sieve Methods and Prime Number Theory, *Tata Lectures Notes*, Vol. 205, 1983.
- [11] Ramaré, O. On Snirel'man's constant, Ann. Scu. Norm. Pisa, Vol. 21, 1995, 645–706.
- [12] Rankin, R. A. The difference between consecutive prime numbers, J. Lond. Math. Soc., Vol. 13, 1938, 242–247.