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Abstract: We show that ∑
1≤n≤N

(∑
d|n

λd

)2
/n� logN

log z
,

where λd is a real valued arithmetic function called the Barban and Vehov weight and we give
an explicit version of a Theorem of Barban and Vehov which has applications to zero-density
theorems.
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1 Introduction

While studying an optimisation problem close to the one that classical initial founding of
the Selberg sieve for prime numbers, Barban and Vehov in [1] noticed the property, valid for
N ≥ z > 1 ∑

1≤n≤N

(∑
d|n,
d≤z

µ(d)
log(z/d)

log z

)2
� N/ log z.

The novelty of this estimate is that no additionnal +O(z2) arises, as it does when using a direct
approach. This enables us to avoid the condition N ≥ z2 log(z). One of the consequences of this
estimate is the result ∑

n≥1

(∑
d|n,
d≤z

µ(d)
log(z/d)

log z

)2
/nω = Oc(1),
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valid for any constant c > 0 and provided that ω ≥ 1 + c(log z)−1. This estimation would be
sufficient to be valid for a fixed constant c > 0.

The second novelty in (Barban and Vehov, 1968) comes from the fact that they consider the
weights

λd =


µ(d) when d ≤ z,

µ(d)
log(z2/d)

log z
when z ≤ d ≤ z2,

0 when d > z2.

(1)

they consider in fact slightly more general weights with a y instead of the z2 that we use here.
They proved that ∑

1≤n≤N

(∑
d|n

λd

)2
� N

log(y/z)
.

They sketched a proof and later proofs were given later by Motohashi [8] (see Motohashi [10,
section 1.3]) and Graham [5]. The estimate above has been used by Motohashi [9] and Jutila [7]
to prove zero-density theorem for L-functions which are sensitive near σ = 1. In this present
work, we propose to give via a classical elementary proof, an explicit version of a Theorem of
Barban and Vehov jointly with a similar result for the quantity:∑

1≤n≤N

(∑
d|n

λd

)2
/n.

Our main theorem is the following

Theorem 1.1. When N ≥ z > 1, we have∑
1≤n≤N

(∑
d|n

λd

)2
/n� logN

log z
.

When N ≤ z, the sum simply vanishes for every summand does and the constant implied by
the�-symbol is explicitly given.

Notation

We denote by τ(n) the number of (positive) divisors of n, and we use here the notation f = O∗(g)
to mean that | f |≤ g.

2 Arithmetical lemmas

Let us begin by giving the following general version in the estimate of the summatory function of
the Möbius function with coprimality restrictions

Lemma 2.1. For any x ≥ 1, ε ≥ 0 and for any integer r ≥ 1, we have

|
∑
n≤x

(n,r)=1

µ(n)

nε+1
| ≤ 1.
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In [6] it is studied the classical case ε = 0.

Proof. First, a direct summation by parts gives us

xε
∑
n≤x

(n,r)=1

µ(n)

nε+1
−
∑
n≤x

(n,r)=1

µ(n)

n
= εxε

∫ x

1

( ∑
n≤t

(n,r)=1

µ(n)

n

) dt

tε+1
. (2)

So, the Lemma follows on recalling part of [6, Lemma 10.2]

|
∑
n≤x

(n,r)=1

µ(n)n−1| ≤ 1, (x ≥ 1).

Applying the choice ε ≤ log 2

log x
in (2), let us deduce also the following consequence

|xε
∑
n≤x

(n,r)=1

µ(n)

nε+1
−
∑
n≤x

(n,r)=1

µ(n)

n
| ≤ 1,

uniformly in x > 1 and r.

Here and below e represents Napier’s constant and p a prime number.

Lemma 2.2. For x ≥ 1, we have ∑
m≤x

µ2(m)/
√
m ≤ 1.33

√
x.

Proof. It suffices to use a summation by parts together with the known result∑
m≤x

µ2(m)− 6x/π2 = O∗(0.1333
√
x).

Lemma 2.3. For pε ≤ ec, we have

log(1− 1

pε+1
)− log(1− 1

p
) ≤ ε

log p

p
+

17/50

p2
,

provided that c ≤ log(1 + 1/p).

Proof. Setting t = 1/pε, x = 1/p, we just have to prove that

z(x, t) = log(1− tx)− log(1− x) + x log t− 17x2/50,

is non positive function. The first derivatives on t, show that z(x, t) is not more than
z(x, 1/(x+1)), provided that ε ≤ log(1+x)/ log(1/x), which equivalent to 1/(x+1) ≤ t ≤ 1.
We conclude the proof after a report that z(x, 1/(x+ 1)) is non positive if 0 < x ≤ 1/2.
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Lemma 2.4. We have for x ≤ 5

|
∑
n≤x

(r,n)=1

µ(n)

nε+1
log

x

n
| ≤ 2.3

r

φ(r)
.

Proof. Indeed, The best value that the left term can set is
∑

n≤5
log(5/n)

n
for (r, 30) = 1. This is

no more than 2.3.

Lemma 2.5. We have for x > 1, xε ≤ ec∑
n≤x

∑
m|n

(m,r)=1

µ(m)

mε
τ(n/m) ≤ ec+31/200x

r

φ(r)
.

provided that c ≤ log(1 + 1/x).

Proof. First, let us remarque that the left hand side is equal and verify

x
∑
n≤x

∑
m|n

(m,r)=1

µ(m)

mε

τ(n/m)

x
≤ x

∑
n≤x

∑
m|n

(m,r)=1

µ(m)

mε

τ(n/m)

n
.

Now, we write the right inequality as

x
∏
p≤x,
p|r

∑
ν≥0

p−ν
∏
p≤x,
p-r

[1 + (1− p−ε)(
∑
ν≥0

p−ν)] ≤ x
∏
p≤x,
p|r

1/(1− p−ε−1)
∏
p≤x

1− p−ε−1

1− 1/p

≤ x
∏
p|r

1

1− 1/p
exp(

∑
p≤x

S(p)),

where S(p) is the majored quantity in Lemma 2.3. Hence, the Lemma readily follows on taking
ε ≤ c(log x)−1 and recalling that∑

p

1

p2
≤ 0.452247421 and

∑
p≤x

log x

x
≤ log(x).

On letting c go to 0, we obtain for the classical case ε = 0

1

x

∑
n≤x

∑
m|n

(m,r)=1

µ(m)τ(n/m) ≤ 1.168
r

φ(r)
.

At this level, we quote the following result

Lemma 2.6. Let x > 1 be a fixed real parameter and xε ≤ e1/5. We have

|
∑
n≤x

(r,n)=1

µ(n)

nε+1
log

x

n
| ≤ 2.86

r

φ(r)
.
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Furthermore, there exists an infinity of squarefree number r such that

Max
x≥1
|
∑
n≤x

(r,n)=1

µ(n)

nε+1
log

x

n
| ≥ e−γ

r

φ(r)
+ o(1).

Proof. At first, according to the previous Lemma the choice c = 1/5 is valid when x > 5. So,
recalling the explicit upper bound of the average value of divisor function given in [3]∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O∗(0.961x
1
2 ), (x ≥ 1),

with γ the Euler’s constant, let us write for x > 5∑
n≤x

∑
m|n

(m,r)=1

µ(m)

mε
τ(n/m) =

∑
m≤x

(m,r)=1

µ(m)

mε+1

∑
n≤x/m

τ(n)

= x
∑
m≤x

(m,r)=1

µ(m)

mε+1
log

x

m
+ (2γ − 1)x

∑
m≤x

(m,r)=1

µ(m)

mε+1

+O∗(0.961
√
x
∑
m≤x

(m,r)=1

µ2(m)

mε+ 1
2

).

Thus, the upper bound of the previous Lemma and Lemmas 2.1, 2.2, we reach

|
∑
m≤x

(m,r)=1

µ(m)

mε+1
log

x

m
| ≤ ec+31/200 r

φ(r)
+ 1.433,

for ε ≤ c(log x)−1. The Lemma 2.4 takes care of the small values of x, so we deduce easily.
For the second part, indeed, for any L ≥ 1 corresponds the squarefree number r =

∏
p≤L p,

which verify θ(L) = log r. Then

Max
x≥1
|
∑
n≤x

(r,n)=1

µ(n)

nε+1
log

x

n
| ≥ log log r + o(1).

But
r

φ(r)
=
∏
p≤L

(
1− 1/p)−1 ∼ eγ logL ∼ eγ log log r,

we conclude the proof.

Lemma 2.7. Let x ≥ 1 be a fixed real parameter. We have∑
n≤x

µ2(n)

φ(n)
≤ log x+ 1.4709.
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Proof. It is a result given by [11] for the case d = 1 on the estimation of∑
n≤x,

(n,d)=1

µ2(n)

φ(n)
.

Lemma 2.8. For ω ≥ 1 and r squarefree number, we have

1

r2(ω−1)

∏
p|r

(pω − 1) <
φ(r)

r

Proof. Since our product can become

r
∏
p|r

pω − 1

p2ω
,

and by the fact that
pω − 1

p2ω
is a decreasing function, which takes its maximum at ω = 1, we

deduce easily.

3 Some results connected to weights λd
We shall need explicit estimates connected to the weight (1).
Let us put

L(y, d) =

{
µ(d) log y

d
if d ≤ y,

0 if not.

We notice that the following decomposition takes place

λd =
(
L(z2, d)− L(z, d)

)
/ log z, (3)

who allows to deduct estimations concerning the λd of those concerning L(y, d).

Lemma 3.1. When 0 ≤ ω − 1 ≤ (5 log y)−1, the quantity

R(r, y, ω) =
∑
d≥1

L(y, rd)
(rd)ω

,

verify

|R(r, y, ω)| ≤ 2.86
1

rω
r

φ(r)
.

Proof. Indeed, the Lemma 2.6 and the writing

R(r, y, ω) =
µ(r)

rω
R(r, y

r
).
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where

R(r, x) =
∑
d≤x,

(d,r)=1

µ(d) log x
d

dω
,

give us
|R(r, x)| ≤ 2.86

r

φ(r)
,

so, the Lemma follows readily.

Let
[
a, b
]

the least common multiple of a and b. We note the following:

Lemma 3.2. For any y > 1, we have∑
d1,d2≥1

L(y, d1)L(y, d2)[
d1, d2

]ω ≤ 8.18(log y + 1.4709),

as soon as 0 < ω − 1 ≤ (5 log y)−1.

Proof. Let us denote by S (y, ω) the quantity to evaluate. First, we use Selberg diagonalization
process. We start by writing

S (y, ω) =
∑
d1,d2

L(y, d1)L(y, d2)(d1, d2)ω

dω1d
ω
2

=
∑
d1,d2

µ2(d1)µ
2(d2)L(y, d1)L(y, d2)(d1, d2)ω

dω1d
ω
2

.

Now, let us define the function Φω(r) =
∏

p|r(p
ω − 1), so that for r squarefree number, we obtain

rω = (Φω ? 111)(r). From this we infer that

S (y, ω) =
∑
r≤y

µ2(r)Φω(r)
(∑
d≥1

L(y/r, rd)
(rd)ω

)2
=

∑
r≤y

µ2(r)Φω(r)R(r, y/r, ω)2.

Thus, by conjugating the Lemmas 2.7, 2.8 and 3.1, the Lemma follows.

Lemma 3.3. For x ≥ y > 1, we have∑
n≤x

(∑
d|n

L(y, d)
)2
/n ≤ 10(log y + 1.4709)(5 log x+ 1).

Proof. First, according to the Rankin’s method [12, Lemma 2], we can write for any ε > 0

∑
n≤x

(∑
d|n

L(y, d)
)2
/n ≤

∑
n≤x

(∑
d|n L(y, d)

)2
n

(x
n

)ε
≤ xε

∑
n≥1

(∑
d|n

L(y, d)
)2
/n1+ε.
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Now, we choose ε = (5 log x)−1 and define ω = 1 + ε. We expand the square and find that∑
n≤x

(∑
d|n

L(y, d)
)2
/n ≤ xε

∑
d1,d2

µ2(d1)µ
2(d2)L(y, d1)L(y, d2)
[d1, d2]1+ε

ζ(1 + ε)

≤ S (y, ω)ζ(ω)xε,

where S (y, ω) it is the quantity that we have evaluated in the precedent Lemma. Finally, by
observing that xε = e1/5 and taking

ζ(ω) ≤ ω

ω − 1
,

since ω is real and close to 1 (See[2, Corollary 1] as well as the in [4, Lemma 2.3]), we conclude
the proof.

4 Proof of main Theorem

We start with the decomposition (3) of λd:

λd = µ(d)
log(z2/d)

log z
111d≤z2 − µ(d)

log(z/d)

log z
111d≤z.

Since |a+ b|2 ≤ 2(|a|2 + |b|2), this leads us to

(log z)2
∑

1≤n≤N

(∑
d|n

λd

)2
/n ≤ 2

∑
1≤n≤N

(∑
d|n,
d≤z2

µ(d) log
z2

d

)2
/n+ 2

∑
1≤n≤N

(∑
d|n,
d≤z

µ(d) log
z

d

)2
/n.

Finally, by applying the precedent Lemma for each summand, we get then∑
1≤n≤N

(∑
d|n

λd

)2
/n ≤ 60

log z + 1

(log z)2
(5 logN + 1),

when N ≥ z > 1. The Theorem follows.

5 An explicit Theorem of Barban and Vehov

We can also explicitly obtain the following Lemma:

Lemma 5.1. For x > 1 and ω ≥ 1 + c(log x)−1, we have∑
n≥1

(∑
d|n

L(x, d)
)2
/nω �c (log x)

2,

provided that c ≤ log(1 + 1/x) .

Proof. We just have to treat the case ω = 1 + c(log x)−1. Following the notations and the same
first steps in proof of Lemma 3.3, we find that∑

n≥1

(∑
d|n

L(x, d)
)2
/nω ≤ S (x, ω)ζ(ω).

Thus, applying Lemma 3.2 and using ζ(ω) ≤ ω

ω − 1
, give the result.
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This Lemma yields readily the next one

Theorem 5.1 (Barban and Vehov). For x > 1, we have∑
n≥1

(∑
d|n

λd

)2
/nω �c 1,

as soon as ω ≥ 1 + c(log x)−1 and c ≤ log(1 + 1/x).

Proof. It is enough to use the decomposition (3) and the precedent Lemma on each summand
which appears.
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