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In the loving memory of my grandparents!

1 Introduction

There is extensive study on the Diophantine equation

X6
1 +X6

2 +X6
3 = Y 6

1 + Y 6
2 + Y 6

3 , (1.1)

and many papers (see [1]–[6]) dealing with different aspects of (1.1) have appeared in journals.
But, the pair of Diophantine equations

2X6
1 +X6

2 = 2Y 6
1 ± Y 6

2 (1.2)

have not yet been investigated. Hence, in this paper, we study two similar Diophantine equations

2A6 +B6 = 2C6 ±D3, (1.3)

which may raise some hope in dealing with (1.2). Based on an elementary approach, we obtain
some parametric solutions for (1.3).
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2 Parameterising 2A6 +B6 = 2C6 ±D3

We need the following Lemma for parameterising (1.3).

Lemma 2.1. For any real values of a and b there is a polynomial identity

(a2 + ab− b2)2 − (a2 + ab− b2)(a2 − ab− b2) + (a2 − ab− b2)2 = (a4 + a2b2 + b4). (2.1)

Proof. Let us expand and simplify the LHS of (2.1).

(a2 + ab− b2)2 = (a4 + 2a3b− a2b2 − 2ab3 + b4); (2.2)

(a2 + ab− b2)(a2 − ab− b2) = (a4 − 3a2b2 + b4); (2.3)

(a2 − ab− b2)2 = (a4 − 2a3b− a2b2 + 2ab3 + b4). (2.4)

Using (2.2), (2.3) and (2.4) we get

LHS of (2.1) = (a4 + 2a3b− a2b2 − 2ab3 + b4)− (a4 − 3a2b2 + b4)

+ (a4 − 2a3b− a2b2 + 2ab3 + b4);

= (a4 + 2a3b− a2b2 − 2ab3 + b4 − a4 + 3a2b2 − b4

+ a4 − 2a3b− a2b2 + 2ab3 + b4);

= (a4 + a2b2 + b4) = RHS of (2.1).

Hence, the proof is complete.

Now, we have

(a2 + ab− b2)3 + (a2 − ab− b2)3 = {(a2 + ab− b2) + (a2 − ab− b2)}× (2.5)

{(a2 + ab− b2)2 − (a2 + ab− b2)(a2 − ab− b2) + (a2 − ab− b2)2}
= 2(a2 − b2)(a4 + a2b2 + b4)[by (2.1)] = 2(a6 − b6).

From (2.5) we get

2b6 + (a2 + ab− b2)3 = 2a6 − (a2 − ab− b2)3. (2.6)

In (2.6) take

a2 + ab− b2 = c2. (2.7)

By (2.6) and (2.7) we get

2b6 + c6 = 2a6 − (a2 − ab− b2)3. (2.8)

From (2.7) we have

a2 + ab− b2 − c2 = 0;

⇒a = {−b±
√

(b2 + 4b2 + 4c2)}/2;

⇒a = {−b±
√

(5b2 + 4c2)}/2. (2.9)

30



In (2.9) take

d2 = 5b2 + 4c2. (2.10)

By (2.9) and (2.10) we get

a = (−b± d)/2. (2.11)

From (2.10) we get

d2 − 4c2 = 5b2; ⇒ (d+ 2c)(d− 2c) = 5b2. (2.12)

In (2.12) take

b = b1b2; (d+ 2c) = 5b21; and (d− 2c) = b22. (2.13)

Now, solving for d and c we get

d = (5b21 + b22)/2; (2.14)

and

c = (5b21 − b22)/4. (2.15)

In (2.11), substituting b and d from (2.13) and (2.14) we get

a = (−b1b2 ± (5b21 + b22)/2)/2;

⇒ a = (−2b1b2 ± (5b21 + b22))/4. (2.16)

In (2.8), take a = (5b21 − 2b1b2 + b22)/4, b = b1b2 and c = (5b21 − b22)/4 from (2.16), (2.13) and
(2.15) respectively to get

2(b1b2)
6 + {(5b21 − b22)/4}6 = 2{(5b21 − 2b1b2 + b22)/4}6 (2.17)

− {((5b21 − 2b1b2 + b22)/4)
2 − ((5b21 − 2b1b2 + b22)/4)b1b2 − (b1b2)

2}3.

Multiplying both the sides of (2.17) by 46, and simplifying, we get

2(4b1b2)
6 + (5b21 − b22)6 = 2(5b21 − 2b1b2 + b22)

6

− {(5b21 − 2b1b2 + b22)
2 − 4(5b21 − 2b1b2 + b22)b1b2 − (4b1b2)

2}3;
⇒2(4b1b2)

6 + (5b21 − b22)6 = 2(5b21 − 2b1b2 + b22)
6 (2.18)

− (25b41 − 40b31b2 + 6b21b
2
2 − 8b1b

3
2 + b42)

3.

Similarly in (2.8), take a = (−5b21 − 2b1b2 − b22)/4, b = b1b2 and c = (5b21 − b22)/4 from (2.16),
(2.13) and (2.15) respectively to get

2(b1b2)
6 + {(5b21 − b22)/4}6 = 2{(−5b21 − 2b1b2 − b22)/4}6

− {((−5b21 − 2b1b2 − b22)/4)2 − ((−5b21 − 2b1b2 − b22)/4)b1b2 − (b1b2)
2}3;

⇒2(b1b2)
6 + {(5b21 − b22)/4}6 = 2{(5b21 + 2b1b2 + b22)/4}6 (2.19)

− {((5b21 + 2b1b2 + b22)/4)
2 + ((5b21 + 2b1b2 + b22)/4)b1b2 − (b1b2)

2}3.
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Multiplying both the sides of (2.19) by 46, and simplifying, we get

2(4b1b2)
6 + (5b21 − b22)6 = 2(5b21 + 2b1b2 + b22)

6

− {(5b21 + 2b1b2 + b22)
2 + 4(5b21 + 2b1b2 + b22)b1b2 − (4b1b2)

2}3;
⇒2(4b1b2)

6 + (5b21 − b22)6 = 2(5b21 + 2b1b2 + b22)
6 (2.20)

− (25b41 + 40b31b2 + 6b21b
2
2 + 8b1b

3
2 + b42)

3.

In (2.18), taking b2 = (b1 + 1) we get

2{4b1(b1 + 1)}6 + {5b21 − (b1 + 1)2}6 = 2{5b21 − 2b1(b1 + 1) + (b1 + 1)2}6

− {25b41 − 40b31(b1 + 1) + 6b21(b1 + 1)2 − 8b1(b1 + 1)3 + (b1 + 1)4}3;
⇒2(4b1(b1 + 1))6 + (4b21 − 2b1 − 1)6 = 2(4b21 + 1)6

− (−16b41 − 48b31 − 12b21 − 4b1 + 1)3;

⇒2(4b1(b1 + 1))6 + (4b21 − 2b1 − 1)6 = 2(4b21 + 1)6 (2.21)

+ (16b41 + 48b31 + 12b21 + 4b1 − 1)3.

In (2.21), taking b1 = p/q, and then multiplying both the sides by q12 we get

2(4p(p+ q))6 + (4p2 − 2pq − q2)6 = 2(4p2 + q2)6 (2.22)

+ (16p4 + 48p3q + 12p2q2 + 4pq3 − q4)3.

Now, based on (2.22) and (2.20) we have the following two theorems:

Theorem 2.2. The Diophantine equation 2A6 + B6 = 2C6 +D3 has infinitely many nontrivial
and primitive solutions in positive integers (A,B,C,D) = {4p(p+ q), (4p2 − 2pq − q2), (4p2 +
q2), (16p4 +48p3q+12p2q2 +4pq3− q4)} where p, q ∈ N such that either (i). p = q = 1, or (ii).
p > q, gcd(2p, q) = 1, and (p+ q) has prime factors αi, i∈N ≡ 2, or 3(mod 4).

Proof. In (2.22), we have already established that

2(4p(p+ q))6 + (4p2 − 2pq − q2)6 = 2(4p2 + q2)6

+ (16p4 + 48p3q + 12p2q2 + 4pq3 − q4)3.

When p = q = 1, we get (A,B,C,D) = (8, 1, 5, 79) where gcd(8, 1, 5, 79) = 1. The conditions:
p, q ∈ N, and p > q, make (A,B,C,D) always positive for infinitely many (p, q) pairs. Since
gcd(2p, q) = 1, q is odd; and (4p2+q2) contains prime factors βj, j∈N ≡ 1(mod 4). So, gcd((4p2+
q2), (p+ q)) = 1; and gcd((4p2 + q2), 4p) = 1. Thus, we see that gcd(A,C) = 1, which implies
that gcd(A,B,C,D) = 1. Thus, under the given conditions, we get infinitely many nontrivial
and primitive solutions for (A,B,C,D).

Example 2.3.

(p, q) = (2, 1) : 2× 246 + 116 = 2× 176 + 6953;

(p, q) = (4, 3) : 2× 1126 + 316 = 2× 736 + 153913.
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Remark 2.4. In Theorem 2.2, if we allow (p + q) to have a prime factor γ ≡ 1(mod 4),
then, there is no guarantee that gcd(A,B,C,D) will always be 1 as one can easily verify from
Table 2.1.

Table 2.1

γ = 5, (p, q) = (4, 1): 2× 806 + 556 = 2× 656 + 73753;
gcd(80, 55, 65, 7375) = 5.

γ = 13, (p, q) = (12, 1): 2× 6246 + 5516 = 2× 5776 + 4164953;
gcd(624, 551, 577, 416495) = 1.

Theorem 2.5. The Diophantine equation 2A6 + B6 = 2C6 −D3 has infinitely many nontrivial
and primitive solutions in positive integers

(A,B,C,D) = {4mn, (5m2−n2), (5m2+2mn+n2), (25m4+40m3n+6m2n2+8mn3+n4)},

where m,n ∈ N such that gcd(5m,n) = 1, 2m > n, and one is odd, the other is even.

Proof. We show that

2(4mn)6 + (5m2 − n2)6 = (5m2 + 2mn+ n2)6 (2.23)

− (25m4 + 40m3n+ 6m2n2 + 8mn3 + n4)3,

by substituting b1 = m, and b2 = n in (2.20). The conditions: m,n ∈ N, and 2m > n, make
(A,B,C,D) always positive for infinitely many (m,n) pairs. The condition gcd(5m,n) = 1 tells
that both of m and n are not even, and 5 is not a factor of n. Since both of m and n are not odd,
B = (5m2 − n2) is odd, and B does not share a common factor with A = 4mn. Thus, we prove
that gcd(A ,B ,C ,D) = 1, so that the numerical solutions we get are primitive.

Example 2.6.

(m,n) = (2, 1) : 2× 86 + 196 = 2× 256 − 7613;

(m,n) = (3, 2) : 2× 246 + 416 = 2× 616 − 46093.
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