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In the loving memory of my grandparents!

1 Introduction

There is extensive study on the Diophantine equation
XS+ XS+ XS =VS + VP + V5, (1.1)

and many papers (see [1]—[6]) dealing with different aspects of (1.1) have appeared in journals.
But, the pair of Diophantine equations

2X0 + X§ =2V + V) (1.2)
have not yet been investigated. Hence, in this paper, we study two similar Diophantine equations

2A% + B® =20% + D3, (1.3)

which may raise some hope in dealing with (1.2). Based on an elementary approach, we obtain
some parametric solutions for (1.3).
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2 Parameterising 2A° + B° = 2C% + D3

We need the following Lemma for parameterising (1.3).

Lemma 2.1. For any real values of a and b there is a polynomial identity

(a® + ab — b*)? — (a® + ab — b*)(a® — ab — b*) + (a® — ab — b*)* = (a* + a®b* +b*). (2.1)

Proof. Let us expand and simplify the LHS of (2.1).

(a® + ab — b*)* = (a* + 2a°b — a*b? — 2ab® + b*);

(a® + ab — b*)(a® — ab — bv*) = (a* — 3a®b® + b*);

(a® —ab — b*)* = (a* — 2a°b — a®b* + 2ab® + b*).
Using (2.2), (2.3) and (2.4) we get

LHS of (2.1) = (a* + 2a®b — a®b* — 2ab® 4 b*) — (a* — 3a*b* + b?)
+ (a* — 2ab — a®b* + 2ab® + b*);
= (a* + 2a°b — a®b* — 2ab® + b* — a* + 3a%V* — b*
+ a* — 2a%b — a®b? + 2ab® + bh);
= (a* + a*b* + b*) = RHS of (2.1).
Hence, the proof is complete.
Now, we have
(a® +ab—b*)* + (a* — ab — b*)* = {(a® + ab — b*) + (a* — ab — b*)} x

{(a* + ab—b*)* — (a® + ab — b*)(a® — ab — b*) + (a® — ab — b*)*}
=2(a® — b)) (a* + a®b* + b*)[by (2.1)] = 2(a® — 1%).

From (2.5) we get
2b° + (a® + ab — b*)* = 2a° — (a® — ab — b*)>.
In (2.6) take
a®+ab—b* = 2.
By (2.6) and (2.7) we get

26° + ® = 2a° — (a® — ab — b*)>.
From (2.7) we have

a*+ab—b*—c* =0
=a = {—b+ /(0> + 402 + 4¢2)}/2;

—a = {—b+ /(502 + 42)}/2.
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In (2.9) take

d* = 5b* + 4c”. (2.10)
By (2.9) and (2.10) we get
a=(—bxd))2. (2.11)
From (2.10) we get
d* — 4c* = 5b*; = (d + 2¢)(d — 2c) = 5b°. (2.12)
In (2.12) take
b = byby; (d + 2¢) = 5b7; and (d — 2¢) = b5. (2.13)

Now, solving for d and ¢ we get

d = (5b5 + b3)/2; (2.14)
and
c = (5b — b3) /4. (2.15)

In (2.11), substituting b and d from (2.13) and (2.14) we get

a = (—biby £ (562 + 12)/2)/2;
= a = (—2b1by £ (502 + 12)) /4. (2.16)

In (2.8), take a = (502 — 2b1by + b3)/4, b = b1by and ¢ = (5b7 — b3) /4 from (2.16), (2.13) and
(2.15) respectively to get

2(b1b2)" + {(50 — 3)/4}° = 2{(5b] — 201b + b3) /4}° (2.17)
— {((5b% — 2b1by + b3)/4)* — ((5b2 — 2b1by + b3) /4)b1by — (b1b2)?}>.

Multiplying both the sides of (2.17) by 4°, and simplifying, we get

2(4b1by)® + (567 — b3)° = 2(5b7 — 2b1by + b3)°
— {(5b% — 2b1by + b3)* — 4(5b3 — 2b1by + b3)b1by — (4b1by)?}?;
=2(4b1by)° + (502 — b3)® = 2(5b% — 2b1by + b3)° (2.18)
— (25b] — 400Dy + 6b2b3 — 8byb3 + b3)>.

Similarly in (2.8), take a = (—5b% — 2b1by — b3) /4, b = byby and ¢ = (502 — b3) /4 from (2.16),
(2.13) and (2.15) respectively to get

2(b1ba)° + {(5b7 — b3) /4}° = 2{(=5b7 — 2b1by — 03) /4}°
— {((=5b7 = 2b1by — 13) /4)* — (=507 — 2b1by — b3) /4)br1by — (br1b2)?};
=2(byby)® 4 { (502 — b3)/4}0 = 2{(5b3 4 2b1by + 13)/4}° (2.19)
— {((5b7 + 201by + 3) /4)? + ((5bF + 201by + 3) /4)brby — (b1bs)?}.
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Multiplying both the sides of (2.19) by 4°, and simplifying, we get

2(4b1by)® + (507 — b2)8 = 2(5b% + 2byby + b2)°
— {(5b7 + 2b1by + b3)% + 4(5bT + 2b1by + b3)b1by — (4byby)?};
=2(4b1by)% + (502 — b2)® = 2(5b% + 2b1by + b2)° (2.20)
— (2501 + 40b5by + 6b2b3 + 8b1b3 + by)>.

In (2.18), taking by = (b; + 1) we get

2{4b; (by + 1)}° + {507 — (by + 1)*}5 = 2{5b? — 2by(by + 1) + (by + 1)?}°
— {25b1 — 40b}(by + 1) + 6b7(by + 1)* — 8by(by + 1) + (by + 1)*};
=2(4by (by +1))° + (467 — 2b; — 1)° = 2(4b3 + 1)°
— (—16b] — 48b7 — 12b7 — 4by + 1);
=2(4by (by +1))5 + (402 — 2b; — 1)° = 2(4b? +1)° (2.21)
+ (1607 + 48b% + 120% + 4b, — 1)°.

In (2.21), taking b; = p/q, and then multiplying both the sides by ¢'? we get

2(4p(p + ))® + (4p* — 2pq — ¢*)° = 2(4p* + ¢*)° (2.22)
+ (16p" + 48p’q + 12p°¢* + 4pg® — ¢*)°.

Now, based on (2.22) and (2.20) we have the following two theorems:

Theorem 2.2. The Diophantine equation 2A% + BS = 2C° + D3 has infinitely many nontrivial
and primitive solutions in positive integers (A, B,C, D) = {4p(p + q), (4p* — 2pq — ¢*), (4p* +
q?), (16p* +48p>q + 12p°¢% + 4pq® — ¢*)} where p, q € N such that either (i). p = q = 1, or (ii).
p > q, gcd(2p,q) = 1, and (p + q) has prime factors «; ;en = 2, 0r 3(mod 4).

Proof. In (2.22), we have already established that

2(4p(p + ))® + (4p* — 2pq — ¢*)° = 2(4p* + ¢*)°
+ (16p* + 48p°q + 12p°¢” + 4pg® — ¢*)°.

When p =g =1, we get (A, B,C, D) = (8,1,5,79) where gcd(8,1,5,79) = 1. The conditions:
p,q € N, and p > ¢, make (A, B, C, D) always positive for infinitely many (p, ¢) pairs. Since
ged(2p, q) = 1, ¢ is odd; and (4p*+¢?) contains prime factors 3; jey = 1(mod 4). So, ged((4p*+
7*),(p+q)) = 1; and ged((4p* + ¢*),4p) = 1. Thus, we see that gcd(A, C') = 1, which implies
that ged(A, B,C, D) = 1. Thus, under the given conditions, we get infinitely many nontrivial

and primitive solutions for (A, B, C, D). O
Example 2.3.

(pg) =(2,1):  2x24°4+11° = 2 x 17° 4 695%;

(p,q) = (4,3):  2x112°431° = 2 x 73° 4 15391°.
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Remark 2.4. In Theorem 2.2, if we allow (p + q) to have a prime factor v = 1(mod4),
then, there is no guarantee that gcd(A, B, C, D) will always be 1 as one can easily verify from
Table 2.1.

Table 2.1

v=5 (p,g) =(4,1): 2x80°+55 =2 x 65° + 7375%;
ged(80, 55, 65, 7375) = 5.

v=13, (p,q)=(12,1): 2 x 6245 + 5516 = 2 x 5775 + 416495%;
ged(624, 551,577, 416495) = 1.

Theorem 2.5. The Diophantine equation 2A% + B® = 2C% — D3 has infinitely many nontrivial

and primitive solutions in positive integers
(A, B,C, D) = {4mn, (5m® —n?), (5m®+2mn+n?), (25m* +40m>n+6m*n® +8mn® +n?)},
where m,n € N such that gcd(5m,n) = 1,2m > n, and one is odd, the other is even.

Proof. We show that

2(4mn)° + (5m? — n*)° = (5m? + 2mn + n?)° (2.23)
— (25m* 4+ 40m>n + 6m*n® + 8mn® + n*)?,

by substituting by = m, and b, = n in (2.20). The conditions: m,n € N, and 2m > n, make
(A, B, C, D) always positive for infinitely many (m, n) pairs. The condition gcd(5m, n) = 1 tells
that both of m and n are not even, and 5 is not a factor of n. Since both of m and n are not odd,
B = (5m? — n?) is odd, and B does not share a common factor with A = 4mn. Thus, we prove

that ged(A, B, C, D) = 1, so that the numerical solutions we get are primitive. ]
Example 2.6.

(m,n) = (2,1) 2 x 8% +19° = 2 x 25° — 7613

(m,n) = (3,2) : 2 x 24% 4+ 41% = 2 x 61° — 4609
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