Notes on Number Theory and Discrete Mathematics ISSN 1310–5132 Vol. 20, 2014, No. 2, 6–9

Fibonacci primes

J. V. Leyendekkers¹ and A. G. Shannon²

¹ Faculty of Science, The University of Sydney NSW 2006, Australia
² Faculty of Engineering & IT, University of Technology Sydney, NSW 2007, Australia
e-mails: tshannon38@gmail.com, Anthony.Shannon@uts.edu.au

Abstract: Fibonacci composites with prime subscripts, F_p , have factors ($kp \pm 1$) in which k is even. The class of p governs the class of k in the modular ring Z_5 , and the digit sum of p, F_p and a function of F_p provide an approximate check on primality.

Keywords: Fibonacci numbers, modular rings, digit sums, prime numbers, Simson's identity. **AMS Classification:** 11B39, 11B50.

1 Introduction

In recent papers [3, 4] methods have been given to characterise Fibonacci primes. Here, we provide a simple method to determine the factors for Fibonacci composites with prime subscripts, F_p . In [3, 4] it was shown that many F_p properties are closely related to the modular ring Z_5 (Table 1) and we find that here too.

Class	$\overline{0}_5$	Ī5	$\overline{2}_5$	35	<u>4</u> 5
Row	$5r_0$	5 <i>r</i> ₁ +1	$5r_2+2$	5 <i>r</i> ₃ +3	5 <i>r</i> ₄ +4
0	0	1	2	3	4
1	5	6	7	8	9
2	10	11	12	13	14
3	15	16	17	18	19
4	20	21	22	23	24
5	25	26	27	28	29

Table 1. The modular ring Z_5

2 Factors of Fibonacci composites with prime subscripts

The factors were found to have the form $(kp \pm 1)$ in which k is even (Table 2) and in a specific class determined by p (Table 3).

р	F_p	k	Factors <i>kp</i> ±1	sign
19	4181	2,6	37, 113	
31	1346269	18, 78	557, 2417	
37	24157817	2, 4, 60	73, 149, 2221	_++
41	165580141	68, 1448	2789, 59369	++
53	53316291173	18, 1055580	953, 55945741	_+
59	956722026041	6, 4593662	353, 2710260697	
67	44945570212853	4, 2493789614	269, 167083904137	+ -
79	14472334024676221	2,1166841411326	157, 92180471494753	
89	1779979416004714189	12, 18708857548320	1069, 1665088321800481	+ +

	Table 2.	Composite	Fibonacci	numbers
--	----------	-----------	-----------	---------

p *	k*	Class in Z ₅
1	8	$\overline{3}_{5}$
3	8,0	$\overline{3}_5 \ \overline{0}_5$
7	2, 4, 0	$\overline{2}_5 \ \overline{4}_5 \ \overline{0}_5$
9	2, 6, 0	$\overline{1}_5 \ \overline{2}_5 \ \overline{0}_5$

Table 3. Z₅ classes

3 Sum of digits of F_p

The sums of digits of integers, also known as the digital root function, $\varphi(n)$, following [1, 2,6], is given by

$$n = \sum_{i=1}^{k} a_i \cdot 10^{k-i} \equiv \overline{a_1 a_2 \dots a_k}$$

where a_i is a natural number and $0 \le a_i \le 9$ ($1 \le i \le k$). Then

$$\varphi(n) = \begin{cases} 0, & n = 0, \\ \sum_{i=1}^{k} a_i, & n > 0. \end{cases}$$

although from this point on in this paper it is sufficient to use the decimal count system. Now let us consider the sums of digits of F_p . These give different values for primes and composites except for right-end-digits $p^* = 3$ or 9 where a sum of 5 is non-distinctive. However, these sums give a rough guide to primality or the possibility of F_p being composite (Table 4).

<i>p</i> *	Primes sum*	Composites sum*		p *	Primes sum*	Composites sum*
1	1,2,8	4		1	2,9	6
3	1,3,5,8	5		3	3,9	6
7	1,4	5,8		7	3,9 (6)	6,9
9	5	4,5,8		9	3	3,6,9
	Table 4	4. sum o	f di	gits	Table	5

Another check is to subtract the digital root function $\varphi(F_p)$ from F_p , then divide that number by 3 and sum the digits; that is:

$$\varphi\left(\frac{1}{3}\left(F_p - \varphi(F_p)\right)\right)$$

n *	Sum of digits of p	
<i>p</i> .	F_p prime	F_p composites
1	2,7,8	4,5
3	1,2,4,5,7	8
7	2,7,8	1,4
9	2	1,5,7,8

as in Table 5. Generally, composites have a sum of 6, with F_{47} an exception. Even the sum of digits of *p* show distinctions between primes and composites (Table 6).

Table 6. Sums of digits of p

4 Final comments

The first factor of the composites generally has a small value for k so that primality is relatively easy to determine. The digit sums also provide guides to primality in special sequences such as the Fibonacci numbers [5].

The digit sum of an integer follows simply from the integer structure, so we can use this sum to characterise certain identities. For example, perfect numbers, N_p , are represented by $2^{p-1}(2^p - 1)$ where p is a prime (Table 7)

р	N_p	Class of N_p in Z_5	$\varphi(N_p)$
2	6	$\overline{1}_5$	6
3	28	$\overline{3}_5$	1
5	496	$\overline{1}_5$	1
7	8128	$\overline{3}_5$	1
11	2096128	35	1
13	33550336	Ī5	1
17	8589869056	Ī5	1

Table 7. Digits sums of some perfect numbers

This illustrates $N_p \in \{\overline{1}_5, \overline{3}_5\} \Rightarrow N_p^* \in \{6, 8\}$ and $\varphi\{N_p\} = 1, p > 2$. For the Fibonacci primes, another digit sum which can be used comes from a modification of Simson's identity:

$$F_{p-1}F_{p+1} = (F_p - 1)(F_p + 1).$$

The corresponding right-end-digit results are

$$p^* = \begin{cases} 1,9 \quad \Rightarrow \frac{F_p - 1}{p} \in Z, \\ 3,7 \quad \Rightarrow \frac{F_p + 1}{p} \in Z, \end{cases}$$

as in Table 8.

n*	Sum of digits			
p.	F_p prime	F_p composites		
1	1, 8, 9	3, 6		
3	2, 4, 6, 9	3		
7	1,4	6, 9		
9	2	3, 4, 5, 6		

Table 8. Fibonacci primes digit sums

References

- Atanassov, K. T., A. G. Shannon. The Digital Root Function for Fibonacci-type Sequences. *Advanced Studies in Contemporary Mathematics*. Vol. 21, 2011, No. 3, 251–254.
- [2] Gardiner, A. Digital Roots, Rings and Clock Arithmetic. *The Mathematical Gazette*. Vol. 66 (437), 1982, 184–188.
- [3] Leyendekkers, J. V., A. G. Shannon. Fibonacci and Lucas Primes. *Notes on Number Theory and Discrete Mathematics*. Vol. 19, 2013, No. 2, 49–59.
- [4] Leyendekkers, J. V., A. G. Shannon. The Pascal-Fibonacci Numbers. *Notes on Number Theory and Discrete Mathematics*. Vol. 19, 2013, No. 3, 5–11.
- [5] Ribenboim, Paulo. *My Numbers, My Friends: Popular Lectures on Number Theory*. Berlin, Springer-Verlag, 2000.
- [6] Shannon A. G., A. F. Horadam. Generalized staggered sums. *The Fibonacci Quarterly*, Vol. 29, 1991, No. 1, 47–51.