A note on a Diophantine equation

József Sándor
Babes-Bolyai University, Department of Mathematics
Str. Kogălniceanu nr. 1, 400084 Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro

Abstract: We offer an elementary approach to the solution of diophantine equation \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2} \), considered recently in Vol. 19, No. 3 of this journal. An extension is provided, too.

Keywords: Diophantine equations.
AMS Classification: 11D68.

1 Introduction

In the recent paper [1] the solution of diophantine equation

\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2} \]

is offered. In the proof, an auxiliary result from paper [2] has been used.

In what follows, we shall point out that, equation can be solved elementary, without the use of any auxiliary result.

2 The proof

We may assume \(x \leq y \leq z \).

As \(\frac{1}{x} < \frac{1}{2} \), we get \(x \geq 3 \). On the other hand, as \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{3}{z} \), by \(\frac{1}{2} \geq \frac{3}{z} \) we get \(z \geq 6 \).

Similarly, as \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \leq \frac{3}{x} \), we get \(x \leq 6 \). Thus for \(x \) the following cases are possible: \(x \in \{3, 4, 5, 6\} \). This leads to the following four equations:

\[x = 3, \quad \frac{1}{y} + \frac{1}{z} = \frac{1}{6}, \]

2
\[x = 4, \quad \frac{1}{y} + \frac{1}{z} = \frac{1}{4}, \quad (3) \]
\[x = 5, \quad \frac{1}{y} + \frac{1}{z} = \frac{3}{10}, \quad (4) \]
\[x = 6, \quad \frac{1}{y} + \frac{1}{z} = \frac{1}{3}. \quad (5) \]

Remark that equations (2), (3), (5) may be rewritten as
\[(y - 6)(z - 6) = 36, \quad (2') \]
\[(y - 4)(z - 4) = 16, \quad (3') \]
\[(y - 3)(z - 3) = 9. \quad (5') \]

As \(z \geq 6 \) in (2') and \(y - 6 \leq z - 6 \), for (2') only the following cases are possible:
\[\begin{align*}
 y - 6 &= 1, \quad z - 6 = 36; \quad y - 6 = 2, \quad z - 6 = 18; \quad y - 6 = 3, \quad z - 6 = 12; \\
 y - 6 &= 4, \quad z - 6 = 9; \quad y - 6 = 6, \quad z - 6 = 6
\end{align*} \]
leading to the solutions
\[(x, y, z) = (3, 7, 42); \ (3, 8, 24); \ (3, 9, 18); \ (3, 10, 15); \ (3, 12, 12). \]

In a same manner, equation (3') leads to
\[(x, y, z) = (4, 5, 20); \ (4, 6, 12); \ (4, 8, 8), \]
while (5') to
\[(x, y, z) = (6, 6, 6). \]

Equation (4) gives by \(\frac{1}{y} + \frac{1}{z} \leq \frac{2}{y} \) that is \(\frac{3}{10} \leq \frac{2}{y} \), so \(y \leq 6 \). Since \(y \geq x = 5 \), we have two cases: \(y = 5 \) and \(y = 6 \). There is solution only for \(y = 5 \), giving:
\[(x, y, z) = (5, 5, 10). \]

Remark. We should note that in Theorem 2.3 of [1], the set of solutions \((x, y, z)\) with \(x \leq y \leq z \) is provided. Clearly any permutation of \((x, y, z)\) is a solution, too.

3 An extension

A more general equation than (1) is
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{p}{q}, \quad (6) \]
where \(p, q \geq 1 \) are given positive integers.

The above method can be extended in order to prove that equation (6) has a finite number of solutions, which can be determined in theory.

Indeed, let us suppose again \(x \leq y \leq z \). Then \(\frac{3}{z} \leq \frac{p}{q} \leq \frac{3}{x} \) implies

\[
x \leq \frac{3q}{p} \leq z,
\]

(7)

where \(x > \frac{q}{p} \), as \(\frac{1}{x} < \frac{q}{p} \). This shows that the possible values of \(x \) lie between \(\left\lfloor \frac{q}{p} \right\rfloor + 1 \) and \(\left\lfloor \frac{3q}{p} \right\rfloor \); i.e. a finite number of values. Let \(x = a \) be such a value. Then from (6) we get

\[
\frac{1}{y} + \frac{1}{z} = \frac{p'}{q'},
\]

(8)

where \(\frac{p'}{q'} = \frac{p}{q} = \frac{1}{a} \). Again, as \(\frac{p'}{q'} \leq \frac{2}{y} \), we get \(a \leq y \leq \frac{2q'}{p'} \), so a finite number of values. Finally, for \(y = b \), with \(a \leq b \leq \frac{2q'}{p'} \) one obtains

\[
\frac{1}{b} + \frac{1}{z} = \frac{p'}{q'},
\]

(9)

with possible solutions \(z = bq'/(p'b - q') \), in case if this is an integer. Therefore the number of values of \(z \) is finite, too.

References

[1] Rabago, J.F.T., R.P. Tagle, On the area and volume of a certain regular solid and the diophantine equation \(\frac{1}{2} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \), *Notes Numb. Th. Discr. Math.*, Vol. 19, 2013, No. 3, 28–37.

[2] Zelator, K. An ancient Egyptian problem: The diophantine equation \(\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) (preprint).