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Abstract: We define numbers of the type Oj(N) = N0 – N1 + N2 – … + N2j and  Ej(N) = 
–N0 + N1 – N2 + … + N2j+1 

 (j = 0, 1, 2, …) and the corresponding integer sequences. We prove 
that these integer sequences, e.g., S0(N) = O0(N), O1(N), …, Or(N), … and SE(N) = E0(N), 
E1(N), …, Er(N), … correspond to the number of odd and even walks in complete graphs KN. 
We then prove that there is a unique family of graphs which have exactly the same sequence of 
odd walks between connected nodes and of even walks between pairs of nodes at distance two, 
respectively. These graphs are the crown graphs: G2n = K2 ⊗ Kn.  
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1 Introduction 

Integer sequences arise from a few different sources, such as enumeration problems, number 
theory, game theory, physics, and so forth [1]. Enumeration problems in graph theory are an 
immense source of integer sequences as can be seen from an inspection of the Online 
Encyclopedia of Integer Sequences [2, 3]. In that particular case an investigation in the context 
of graph theory or combinatorics gives rise to a sequence of integers, which is then properly 
investigated. However, here we pose a different problem. For instance, let  N ∈ N  be a natural 
number (N > 1) and let us define the following numbers (j = 0, 1, 2, …): 

 Oj(N) = N0 – N1 + N2 – … + N2j, (1.1) 

 Ej(N) = –N0 + N1 – N2 + … + N2j+1. (1.2) 

Using Oj (N) and Ej (N) let us now introduce the following sequences: 

 SO(N) = O0(N), O1(N), …, Or(N), …  (1.3) 

 SE(N) = E0(N), E1(N), …, Er(N), … . (1.4) 

There are two SO(N) and three SE(N) sequences reported in the Online Encyclopedia of 
Integer Sequences (OEIS) [3]. They are: 



79 
 

 
Sequence OEIS code Current work 
1, 3, 11, 43, 171, ... A007583 SO(2)
1, 7, 61, 547, 4921, ... A066443 SO(3)
0, 1, 5, 21, 85, 341, ... A002450 0, SE(2)  *

0, 2, 20, 182, 1640, ... A125857 0, SE(3)  *

0, 3, 51, 819, 13107, ... A182512 0, SE(4)  *
*   The even sequences here do not include zero as in the OIES ones. 

 
They appear, however, related to different mathematical objects. For instance, A007583, 

A002450 and A182512 appear associated to the formulae (22n+1 + 1) / 3, (4n – 1) / 3 and 
(16n – 1) / 5, respectively. However, A066443 appears as the number of distinct walks of 
length 2n + 1 along edges of a unit cube between two fixed adjacent vertices and A125857 
represents the numbers whose base 9 representation is 22222222...2. For N > 3 no sequence of 
the type SO(N) is reported in the OEIS and the same is true for SE(N) when N > 4. So, the 
questions are: Is there a general framework in which all of these sequences can be grouped 
together? Are these sequences related to any property of a certain kind of graph?  

Of course, these questions are not always possible to be answered. However, in the 
particular case that we can associate such sequences with a property of a type of graph we can 
yet ask another fundamental question. Given an integer sequence that represents a property of a 
given kind of graph, can we construct another family of graphs having the same sequence for 
this property? These questions are investigated here for the particular sequences (1.3) and (1.4). 
We find here that they correspond to the number of odd and even-length walks between pairs 
of nodes in complete graphs. We then prove that for each complete graph Kn there is a unique 
graph, not isomorphic to Kn, which has exactly the same sequence of walks. These graphs are 
the bipartite double cover of the complete graphs, which are known as crown graphs.  

2 Preliminary results 

For the sake of self-containment of this work we prove here a few basic results which are 
needed for proving the main result stated in the next section. We start by finding the general 
expressions for the numbers Oj(N) and Ej(N).  
Lemma 2.1: The numbers Oj(N) and Ej(N) are positive integers given by the following 
formulae: 
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Proof: The procedure is quite similar for both numbers, thus we are showing only it for Oj(N). 
This number can be expressed as: 
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In order to show that the number is a positive integer it is enough to realize that  
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which proves the result. In a similar way the proof for Ej(N) is conducted.  
 
Now we prove the following result that relates the sequences SO(N) and SE(N) with the 

number of walks in complete graphs. Let us consider a simple graph without multiple links or 
self-loops G = (V, E)

 
with nodes (vertices) vi ∈ V, i = 1, …, n and edges {vi, vj} ∈ E. A walk of 

length k is a sequence of (not necessarily distinct) nodes v0, v1, …, vk–1, vk, such that for each 
i = 1, 2, …, k there is an edge from vi–1 to vi. If v0  = vk the walk is named a closed walk. A 
complete graph Kn is the graph having n nodes and every pair of nodes is connected by an 
edge. 

 
Theorem 2.2: The sequence SO(N) and SE(N) give, respectively, the number of walks of odd 
and even lengths between pairs of nodes in a complete graph Kn+1. 
Proof: Let M2 r+1(p, q) be the number of odd walks of length 2r + 1 between the nodes p and q   
in KN+1. Then, it is known that 
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where ϕj(p) is the pth entry of the orthonormalized eigenvector associated with the λj eigen-
value. 

The principal eigenvalue of the adjacency matrix of KN+1 is N and its corresponding 

orthonormalized eigenvector is ( ) 1

1N
−

+ 1 , where 1  is an all-ones vector. The rest of the 

eigenvalues are equal to 1− . Then, 
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In a similar way the result for the number of walks of even length M2r(p, q) between two nodes 
in KN+1 is proved.  
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We now turn our attention to the graphs G = H ⊗ K2, which are known as the bipartite 
double cover of the graph H. Here ⊗ denotes the tensor (Kronecker product) of the adjacency 
matrices of the two graphs. In the next section we prove the main result of this work, which is 
related to the number of walks in the bipartite double covers of complete graphs: G = K2 ⊗ KN. 
These graphs are known as crown graphs. We state now a few known or easy to prove 
properties of crown graphs [4–9]: 

1) G2N has 2N  nodes, where N is the number of nodes in the original KN; 
2) G2N is bipartite and regular with degree 1k N= − ; 
3) The adjacency matrix of 2 NG  is 

( ) ( )
( )2

0
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N
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;
 

4) The diameter of G2N is 3 and its distance matrix is 
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5) The number of walks of length r  between the nodes i  and j  in the graph G2N is given 
by:  
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where 1
2
Nk = −  is the degree of a node in G2N. 

6) The spectrum of G2N is sp(G2N) = {[k]1, [1]N–1, [–1]N–1, [–k]1}; 
7) The graphs G2N are distance-regular graphs. 

3 Main result  

Now, we state the main result of this work. Let SO(N) = O1(N), O3(N), …, O2r+1(N), … be the 
sequence of walks of odd length in a complete graph KN. Then, by Lemma 2.1 and Theorem 
2.2 we obtain that 
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Theorem 3.1: Let G be a graph with adjacency matrix A = (aij). Then, for every edge p – q of 
G the virtual power ( ) ( )2 1j

pq ja O N+ = , for every 1j ≥ , if and only if G is the bipartite double 

cover graph of a complete graph, G = K2 ⊗ KN. 
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Proof: We divide the proof in several steps. 
Proposition 3.2: Let G be a connected, bipartite almost complete graph with N nodes. Then the 
following hold: 

(a) The spectral radius 1Nρ = − ;  
(b) G is a regular graph with constant degree kp = N – 1 for any node p. 

Proposition 3.3: Let G be a connected, bipartite graph satisfying: 
(c) G is a regular graph with constant degree kp = N – 1 for any node p; 

(d) For every edge p – q we have ( ) ( )2 1

2 1 1 1
j

j

pq
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+
− +

=  for 1,2j = .  

Then G = K2 ⊗ KN.  
We proceed with the proof of the Propositions. 

Proof of Proposition 3.2: Let us write B = A(KN) = (brs) for the adjacency matrix of KN. Then 
for any edge p – q in G we have  

 
( ) ( )2 1 2 12 12 1lim lim 1j jjj
pq rsj j

a b Nρ + +++

→∞ →∞
= = = − . (3.2) 

Let p be any vertex of G  and choose an edge p – q. The matrix 1A A
ρ

=%  is double stochastic, 

its (p, q) entry 
1

1pqa
N

=
−

%  measures the probability to go from node p to node q in the graph 

G . Therefore, kp = N – 1.  
 
We need the following Lemma for the proof of Proposition 3.3. 
Lemma 3.4: Let G be a bipartite graph satisfying (c) and (d) above. Then for any pair of nodes 
(p, q) in G  the following holds: 

( )2 2pqa N≤ − . 

Proof: Assume otherwise that ( )2 2pqa N> − . Observe that ( )2 1pq ps sqs
a a a N= ≤ −∑ . Hence 

( )2 1pqa N= −  and we get the following full subgraph H  of G: 
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where all neighbouring vertices to p and q are 1, …, N – 1. Let us calculate ( )3

1pa . Indeed, using 

hypothesis (d) we get 
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which yields either one of the following two situations: 
1) ( )2

1 1ja N= − , for some 1 j≠ . Without loss of generality, for 2j =  we have 
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Since there are no edges connecting any two of 1, …, N – 1, because G is bipartite, there 
should exist vertices 2′, …, (N – 2)′ not in H , maybe not pairwise different, such that 
a1s, as2 = 1, for each s = 2′, …, (N – 2)′. We can assume that a1j′, aj′ 2 = 1, for each j = 2, …, N –2.  
and there are no paths of length two between 1 and N – 1.  Repeating the calculation done in 
(3.3) we get 
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which is a contradiction.  
2) For i j≠  in the set 1, …, N – 1, we have ( )2 2ija N= − . Then 
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which also yields a contradiction.  
 
Proof of Proposition 3.3: We shall now describe the structure of the matrix A2. For that 
purpose we shall calculate all virtual powers ( )2

ija .  

First, for each vertex p we have ( )2 1pp pa k N= = − . Let p, q be different vertices in G . By 

the Lemma above, ( )2 2pqa N≤ − . Assume that ( )2 0pqa ≠  and take any vertex j with edges 

p j q− − . Then for the neighbours 1, , 1N −K  of j we get, using Proposition 3.2, 
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which implies equality ( )2 2pqa N= − .  

We observe that the number of vertices of the graph G  is n = 2N. Indeed, since G  is 
bipartite, we get two non-empty classes V1, V2 of totally disconnected vertices in the set 
1, …, n. Let p, q, s be three different vertices in V1 and p j q i− − −  edges. Then  

 
( ) ( )2 22pq qsa N a= − = . (3.8) 

Since this number is not zero, there is a vertex k in V2 which is connected to p and s, and 
( )2 0psa ≠ . Therefore A2 has ( )2 2pqa N= −  or 0 depending if p, q belong or not to the same class Vi. 

Hence each of V1 and V2 have the same cardinality N.  
Moreover it is clear that the adjacency matrix A  has entries apq = 0 or 1	depending if p, q 

are different and in distinct classes or belong to the same class Vi, respectively. As desired, it 
follows that A = A(K2) ⊗ A(KN).  
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4 Closing remarks 

We have introduced two new integer sequences which we prove correspond to the sequences of 
even and odd walks in complete graphs Kn. The fundamental question posted here is whether 
there are other graphs with exactly the same sequence of walks as those of the complete 
graphs. We have proved that the answer is positive and the graphs having such sequences are 
unique. They correspond to the bipartite double covers of the complete graphs, known as 
crown graphs: G2n = K2 ⊗ Kn.  
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