Notes on Number Theory and Discrete Mathematics
Vol. 19, 2013, No. 3, 6669

Modular zero divisors
of longest exponentiation cycle

Amin Witno

Department of Basic Sciences
Philadelphia University, 19392 Jordan

e-mail: awitno@gmail.com

Abstract: We show that the sequence w* mod n, given that ged(w, n) > 1, can reach a maximal
cycle length of ¢(n) if and only if n is twice an odd prime power, w is even, and w is a primitive
root modulo n/2.
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In the ring Z,, of modular integers, the nonzero elements are partitioned into two subsets: the unit
elements w € Z, with gcd(w,n) = 1 and the zero divisors w € Z, for which ged(w,n) > 1.
(For references, see Dummit and Foote [1, pp. 226-227] or other algebra text.) The unit elements
form the multiplicative group U, of order ¢(n), where ¢(n) is the Euler’s totient function. The
group U, is cyclic when there exists a primitive root modulo n, i.e., an element w € U, of
maximal multiplicative order ¢(n).

In this article, we consider the analog of multiplicative order for the zero divisors in Z,,. Note
that if gcd(w,n) > 1, then the sequence w* mod n will never yield unity since the congruence
w* =1 (mod n) would imply that w*~! is the multiplicative inverse of w in Z,,, and so we would

have w € U,,. This leads us to the following definition.

Definition. For every element w € Z,, let L = L(w,n) be the least positive integer such that
w? = wX (mod n) for some integer K in the range 0 < K < L. By the cycle length of w
modulo n we mean the quantity |w|, = L — K. In particular, when w € U, then |w|,, is just the

multiplicative order of w modulo n.

With this definition, we will be able to show that |w/|,, divides ¢(n) (a result which is already

known as far as ged(w,n) = 1) for all zero divisors w € Z,, implying that |w|, < ¢(n). Our
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modest goal is then to give a practical classification for the pair (w,n) for which we do have
wln = @(n).

We start our observations with Table 1, which serves to illustrate the modular exponentiation
with n = 18 and how the cycle length |w|;s is computed for every zero divisor w € Zg. Note
w|is is a divisor of ¢(18) = 6.

that in each case,

Table 1: The zero divisors w € Zig and their cycle length |w|;s.

w o w? w o wt w o wt W’ lw]1s

2 4 8 16 14 10 2|7—-1=6
39 9 9 9 9 9|13-2=1
4 16 10 4 16 10 4|4-1=3
6 0 0 O O 0 0|3-2=1
8 10 8 10 8 10 8|3—-1=2
9 9 9 9 96 9 912-1=1

10 10 10 10 10 10 10|2—-1=1
12 0 0 O 0 0]3-2=1
14 16 4 10 14|7-1=6
I5 9 9 9 9 9|3-2=1
16 4 10 16 10 16 |4—-1=3

oo

~ O o O

We will now present a series of results leading to our goal, which will be accomplished in
Theorem 4. The interested reader may wish to compare Theorem 1 to a stronger result that has
previously appeared in print [2, Theorem 4.7]. Nevertheless, it will be appropriate to make our

newer theorem independent from the latter as well as minimized to suit our purposes.

Theorem 1. Suppose that gcd(w, n) > 1. Let m be the largest factor of n such that ged(w, m) =

1. Then there exists a positive integer k such that w* = w*+¢(™) (mod n).

Proof. Observe that every prime factor of n/m is a divisor of w. Hence, we can find an integer k
such that w* = 0 (mod n/m). Now if m = 1, then the claim is trivially true, so we assume now
m > 1. Then by Euler’s theorem, we have w*™ = 1 (mod m). Combine the two congruences

by multiplying the moduli, and we get w*T*(™) = w* (mod n) as desired. O
Theorem 2. For every nonzero element w € Z,, we have |w|,, divides ¢(n).

Proof. Assume that ged(w,n) > 1 since this is our only concern. We note that as soon as
the sequence w”* mod n yields a repeated term, say w® = w’ (mod n) for some least possi-
ble exponent L > K, then the sequence becomes periodic with the earliest cycle consisting of
wk wkT o wETt With the number m defined in Theorem 1, we see that ¢(m) must then
be some multiple of the cycle length |w|,,. And since m is a factor of n, by the property of the

Euler’s function, ¢(m) divides ¢(n); thus by transitivity, also |w|,, divides ¢(n). O
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Theorem 3. Let gcd(w,n) > 1 and let m be the largest factor of n for which ged(w, m) = 1. If

|lw|, = ¢(n), then |w|,, = ¢(m) and w is a primitive root modulo m.

Proof. Suppose that |w|, = ¢(n). As explained in the proof of Theorem 2, we must have that
lw|, = ¢(m) = ¢(n). But with m being a factor of n, this identity between the two Euler’s
functions is possible only when n = 2m and m is odd. It follows that gcd(w, n) = 2 and so, for

any pair (k, ) of positive integers, the congruence

w" = wP  (mod n),

upon dividing both sides by w¥, is equivalent to
w'=1 (mod n/2).

If [ is to be the least value for which the congruences hold, then we see why the cycle length of
w modulo n must equal the multiplicative order of w modulo /2 = m. In particular, we now
have |w|,, = ¢(n). Since ¢p(n) = ¢(m) and w € U,,, this says that w is a primitive root modulo
m. O]

Theorem 4. Let w € {1,2,3,...,n — 1} with gcd(w,n) > 1. Then |w|,, = ¢(n) if and only if

w is even and n = 2m for some odd prime power m modulo which w is a primitive root.

Proof. For necessity, Theorem 3, together with its proof, asserts that w must be even and a prim-
itive root modulo the odd number m = n/2. The primitive root theorem [2, Theorem 5.6] now
requires that m be an odd prime power in order for such w to exist. (By a prime power we mean
a number p* for some prime p and integer k > 1.)

To prove sufficiency, suppose that w is an even primitive root modulo m = n/2. Then

ged(w,n) = 2, and the same argument used in the preceding proof states that w*™! = w*
(mod n) if and only if w! = 1 (mod m). Therefore, |w|, = |w|,, = ¢(m), where ¢(m) =
¢(2m) = ¢(n). 0

As a further consequence of Theorem 4, we have the following fact concerning the total
number of zero divisors in Z,, which have the maximal cycle length of ¢(n). Once again, the result
mirrors its analog for the number of unit elements of multiplicative order ¢(n), i.e., primitive roots

modulo n.

Theorem 5. For a fixed n, suppose that we can find a zero divisor wy € Z,, such that |wyl|, =

¢(n). Then there exist exactly ¢(¢(n)) zero divisors w € Z, for which |w|,, = ¢(n).

Proof. We have established that n = 2m, ¢(n) = ¢(m), and that wy is a primitive root modulo
m. As a known fact, the existence of one primitive root means that there are exactly ¢(¢(m))
primitive roots modulo m. (Incidentally, this also gives the same number of primitive roots mod-

ulo 2m since m is odd.) In particular, if g is a primitive root modulo m, then both g and g + m
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are primitive roots modulo m, and exactly one of them is even. Hence, among the integers from
1 to 2m, there are exactly ¢(¢(m)) even numbers which are primitive roots modulo m. In view
of the preceding Theorem 4, ¢(¢(m)) is therefore the number of zero divisors w in Z,, with
|w]n = ¢(n). 0
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