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Abstract: We show that the sequence wk mod n, given that gcd(w, n) > 1, can reach a maximal

cycle length of φ(n) if and only if n is twice an odd prime power, w is even, and w is a primitive

root modulo n/2.
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In the ring Zn of modular integers, the nonzero elements are partitioned into two subsets: the unit

elements w ∈ Zn with gcd(w, n) = 1 and the zero divisors w ∈ Zn for which gcd(w, n) > 1.

(For references, see Dummit and Foote [1, pp. 226–227] or other algebra text.) The unit elements

form the multiplicative group Un of order φ(n), where φ(n) is the Euler’s totient function. The

group Un is cyclic when there exists a primitive root modulo n, i.e., an element w ∈ Un of

maximal multiplicative order φ(n).

In this article, we consider the analog of multiplicative order for the zero divisors in Zn. Note

that if gcd(w, n) > 1, then the sequence wk mod n will never yield unity since the congruence

wk ≡ 1 (mod n) would imply thatwk−1 is the multiplicative inverse ofw in Zn, and so we would

have w ∈ Un. This leads us to the following definition.

Definition. For every element w ∈ Zn, let L = L(w, n) be the least positive integer such that

wL ≡ wK (mod n) for some integer K in the range 0 ≤ K < L. By the cycle length of w

modulo n we mean the quantity |w|n = L−K. In particular, when w ∈ Un, then |w|n is just the

multiplicative order of w modulo n.

With this definition, we will be able to show that |w|n divides φ(n) (a result which is already

known as far as gcd(w, n) = 1) for all zero divisors w ∈ Zn, implying that |w|n ≤ φ(n). Our
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modest goal is then to give a practical classification for the pair (w, n) for which we do have

|w|n = φ(n).

We start our observations with Table 1, which serves to illustrate the modular exponentiation

with n = 18 and how the cycle length |w|18 is computed for every zero divisor w ∈ Z18. Note

that in each case, |w|18 is a divisor of φ(18) = 6.

Table 1: The zero divisors w ∈ Z18 and their cycle length |w|18.
w w2 w3 w4 w5 w6 w7 |w|18
2 4 8 16 14 10 2 7− 1 = 6

3 9 9 9 9 9 9 3− 2 = 1

4 16 10 4 16 10 4 4− 1 = 3

6 0 0 0 0 0 0 3− 2 = 1

8 10 8 10 8 10 8 3− 1 = 2

9 9 9 9 9 9 9 2− 1 = 1

10 10 10 10 10 10 10 2− 1 = 1

12 0 0 0 0 0 0 3− 2 = 1

14 16 8 4 2 10 14 7− 1 = 6

15 9 9 9 9 9 9 3− 2 = 1

16 4 10 16 4 10 16 4− 1 = 3

We will now present a series of results leading to our goal, which will be accomplished in

Theorem 4. The interested reader may wish to compare Theorem 1 to a stronger result that has

previously appeared in print [2, Theorem 4.7]. Nevertheless, it will be appropriate to make our

newer theorem independent from the latter as well as minimized to suit our purposes.

Theorem 1. Suppose that gcd(w, n) > 1. Let m be the largest factor of n such that gcd(w,m) =

1. Then there exists a positive integer k such that wk ≡ wk+φ(m) (mod n).

Proof. Observe that every prime factor of n/m is a divisor of w. Hence, we can find an integer k

such that wk ≡ 0 (mod n/m). Now if m = 1, then the claim is trivially true, so we assume now

m > 1. Then by Euler’s theorem, we have wφ(m) ≡ 1 (mod m). Combine the two congruences

by multiplying the moduli, and we get wk+φ(m) ≡ wk (mod n) as desired.

Theorem 2. For every nonzero element w ∈ Zn, we have |w|n divides φ(n).

Proof. Assume that gcd(w, n) > 1 since this is our only concern. We note that as soon as

the sequence wk mod n yields a repeated term, say wK ≡ wL (mod n) for some least possi-

ble exponent L > K, then the sequence becomes periodic with the earliest cycle consisting of

wK , wK+1, . . . , wL−1. With the number m defined in Theorem 1, we see that φ(m) must then

be some multiple of the cycle length |w|n. And since m is a factor of n, by the property of the

Euler’s function, φ(m) divides φ(n); thus by transitivity, also |w|n divides φ(n).
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Theorem 3. Let gcd(w, n) > 1 and let m be the largest factor of n for which gcd(w,m) = 1. If

|w|n = φ(n), then |w|m = φ(m) and w is a primitive root modulo m.

Proof. Suppose that |w|n = φ(n). As explained in the proof of Theorem 2, we must have that

|w|n = φ(m) = φ(n). But with m being a factor of n, this identity between the two Euler’s

functions is possible only when n = 2m and m is odd. It follows that gcd(w, n) = 2 and so, for

any pair (k, l) of positive integers, the congruence

wk+l ≡ wk (mod n),

upon dividing both sides by wk, is equivalent to

wl ≡ 1 (mod n/2).

If l is to be the least value for which the congruences hold, then we see why the cycle length of

w modulo n must equal the multiplicative order of w modulo n/2 = m. In particular, we now

have |w|m = φ(n). Since φ(n) = φ(m) and w ∈ Um, this says that w is a primitive root modulo

m.

Theorem 4. Let w ∈ {1, 2, 3, . . . , n − 1} with gcd(w, n) > 1. Then |w|n = φ(n) if and only if

w is even and n = 2m for some odd prime power m modulo which w is a primitive root.

Proof. For necessity, Theorem 3, together with its proof, asserts that w must be even and a prim-

itive root modulo the odd number m = n/2. The primitive root theorem [2, Theorem 5.6] now

requires that m be an odd prime power in order for such w to exist. (By a prime power we mean

a number pk for some prime p and integer k ≥ 1.)

To prove sufficiency, suppose that w is an even primitive root modulo m = n/2. Then

gcd(w, n) = 2, and the same argument used in the preceding proof states that wk+l ≡ wk

(mod n) if and only if wl ≡ 1 (mod m). Therefore, |w|n = |w|m = φ(m), where φ(m) =

φ(2m) = φ(n).

As a further consequence of Theorem 4, we have the following fact concerning the total

number of zero divisors in Zn which have the maximal cycle length of φ(n). Once again, the result

mirrors its analog for the number of unit elements of multiplicative order φ(n), i.e., primitive roots

modulo n.

Theorem 5. For a fixed n, suppose that we can find a zero divisor w0 ∈ Zn such that |w0|n =

φ(n). Then there exist exactly φ(φ(n)) zero divisors w ∈ Zn for which |w|n = φ(n).

Proof. We have established that n = 2m, φ(n) = φ(m), and that w0 is a primitive root modulo

m. As a known fact, the existence of one primitive root means that there are exactly φ(φ(m))

primitive roots modulo m. (Incidentally, this also gives the same number of primitive roots mod-

ulo 2m since m is odd.) In particular, if g is a primitive root modulo m, then both g and g +m
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are primitive roots modulo m, and exactly one of them is even. Hence, among the integers from

1 to 2m, there are exactly φ(φ(m)) even numbers which are primitive roots modulo m. In view

of the preceding Theorem 4, φ(φ(m)) is therefore the number of zero divisors w in Zn with

|w|n = φ(n).
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