A note on the modified q-Dedekind sums

Serkan Araci1, Erdoğan Şen2 and Mehmet Acikgoz3

1 Department of Mathematics, Faculty of Science and Arts, University of Gaziantep
27310 Gaziantep, Turkey
e-mails: mtsrkn@hotmail.com, saraci88@yahoo.com.tr, mtsrkn@gmail.com

2 Department of Mathematics, Faculty of Science and Letters, Namık Kemal University
59030 Tekirdağ, Turkey
e-mail: erdogan.math@gmail.com

3 Department of Mathematics, Faculty of Science and Arts, University of Gaziantep
27310 Gaziantep, Turkey
e-mail: acikgoz@gantep.edu.tr

Abstract: In the present paper, the fundamental aim is to consider a p-adic continuous function for an odd prime to inside a p-adic q-analogue of the higher order Extended Dedekind-type sums related to q-Genocchi polynomials with weight α by using fermionic p-adic invariant q-integral on \mathbb{Z}_p.

Keywords: Dedekind Sums, q-Dedekind-type Sums, p-adic q-integral, q-Genocchi polynomials with weight α.

AMS Classification: 11S80, 11B68.

1 Introduction

Imagine that p be a fixed odd prime number. We now start with definition of the following notations. Let \mathbb{Q}_p be the field p-adic rational numbers and let \mathbb{C}_p be the completion of algebraic closure of \mathbb{Q}_p.

Thus,

$$\mathbb{Q}_p = \left\{ x = \sum_{n=-k}^{\infty} a_n p^n : 0 \leq a_n < p \right\}.$$

Then \mathbb{Z}_p is integral domain, which is defined by

$$\mathbb{Z}_p = \left\{ x = \sum_{n=0}^{\infty} a_n p^n : 0 \leq a_n < p \right\}$$
or

$$\mathbb{Z}_p = \left\{ x \in \mathbb{Q}_p : |x|_p \leq 1 \right\}.$$

We assume that $q \in \mathbb{C}_p$ with $|1 - q|_p < 1$ as an indeterminate. The p-adic absolute value $|.|_p$ is normally defined by

$$|x|_p = \frac{1}{p^n}$$

where $x = p^n \frac{x}{t}$ with $(p, s) = (p, t) = (s, t) = 1$ and $n \in \mathbb{Q}$ (for details, see [1-19]).

The p-adic q-Haar distribution is defined by Kim as follows: for any postive integer n,

$$\mu_q (a + p^n \mathbb{Z}_p) = (-q)^a \frac{(1 + q)}{1 + q^a}$$

for $0 \leq a < p^n$ and this can be extended to a measure on \mathbb{Z}_p (for details, see [12], [14], [17]).

In [7], the q-Genocchi polynomials are defined by Araci et al. as follows:

$$\widetilde{G}_{n,q}^{(\alpha)} (x) = n \int_{\mathbb{Z}_p} \left(\frac{1 - q^{\alpha(x+\xi)}}{1 - q^{\alpha}} \right)^{n-1} d\mu_q (\xi)$$

for $n \in \mathbb{Z}_+ := \{0, 1, 2, 3, \cdots \}$. We easily see that

$$\lim_{q \to 1} \widetilde{G}_{n,q}^{(\alpha)} (x) = G_n (x)$$

where $G_n (x)$ are Genocchi polynomials, which are given in the form:

$$\sum_{n=0}^{\infty} G_n (x) \frac{t^n}{n!} = e^{tx} \frac{2t}{e^t + 1}, \quad |t| < \pi$$

(for details, see [7]). Taking $x = 0$ into (1), then we have $\widetilde{G}_{n,q}^{(\alpha)} (0) := \widetilde{G}_{n,q}^{(\alpha)}$ are called q-Genocchi numbers with weight α.

The q-Genocchi numbers and polynomials have the following identities:

$$\widetilde{G}_{n+1,q}^{(\alpha)} = (n + 1) \frac{1 + q}{(1 - q^\alpha)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{1}{1 + q^\alpha l + 1},$$

$$\widetilde{G}_{n+1,q}^{(\alpha)} (x) = (n + 1) \frac{1 + q}{(1 - q^\alpha)^n} \sum_{l=0}^{n} \binom{n}{l} (-1)^l \frac{q^{\alpha l x}}{1 + q^\alpha l + 1},$$

$$\widetilde{G}_{n,q}^{(\alpha)} (x) = \sum_{l=0}^{n} \binom{n}{l} q^{\alpha l x} \widetilde{G}_{l,q}^{(\alpha)} \left(\frac{1 - q^{\alpha l}}{1 - q^\alpha} \right)^{n-l}.$$

Additionally, for d odd natural number, we have

$$\widetilde{G}_{n,q}^{(\alpha)} (dx) = \left(\frac{1 + q}{1 + q^d} \right) \left(\frac{1 - q^{ad}}{1 - q^\alpha} \right)^{n-1} \sum_{a=0}^{d-1} q^a (-1)^a \widetilde{G}_{n,q}^{(\alpha)} (x + \frac{a}{d}),$$

(for details about this subject, see [7]).

For any positive integer h, k and m, Dedekind-type DC sums are given by Kim in [9], [10] and [11] as follows:
\[S_m(h, k) = \sum_{M=1}^{k-1} (-1)^{M-1} \frac{M}{k} \bar{E}_m \left(\frac{hM}{k} \right) \]

where \(\bar{E}_m(x) \) are the \(m \)-th periodic Euler function.

In 2011, Taekyun Kim added a weight to \(q \)-Bernoulli polynomials in [16]. He derived not only new but also interesting properties for weighted \(q \)-Bernoulli polynomials. After, many mathematicians, by utilizing from Kim’s paper [16], have introduced a new concept in Analytic numbers theory as weighted \(q \)-Bernoulli, weighted \(q \)-Euler, weighted \(q \)-Genocchi polynomials in [17], [6], [7], [1], [3] and [5]. Also, the generating function of weighted \(q \)-Genocchi polynomials was introduced by Araci et al. in [7]. They also derived several arithmetic properties for weighted \(q \)-Genocchi polynomials.

Kim has given some interesting properties for Dedekind-type DC sums. He firstly considered a \(p \)-adic continuous function for an odd prime number to contain a \(p \)-adic \(q \)-analogue of the higher order Dedekind-type DC sums in [10].

By the same motivation, we, by using \(p \)-adic invariant \(q \)-integral on \(\mathbb{Z}_p \), shall get weighted \(p \)-adic \(q \)-analogue of the higher order Dedekind-type DC sums.

2 Extended \(q \)-Dedekind-type sums in connection with \(q \)-Genocchi polynomials with weight \(\alpha \)

If \(x \) is a \(p \)-adic integer, then \(w(x) \) is the unique solution of \(w(x) = w(x)^p \) that is congruent to \(x \) mod \(p \). It can also be defined by

\[w(x) = \lim_{n \to \infty} x^{p^n}. \]

The multiplicative group of \(p \)-adic units is a product of the finite group of roots of unity, and a group isomorphic to the \(p \)-adic integers. The finite group is cyclic of order \(p-1 \) or \(2 \), as \(p \) is odd or even, respectively, and so it is isomorphic. Actually, the teichmüller character gives a canonical isomorphism between these two groups.

Let \(w \) be the Teichmüller character (mod \(p \)). For \(x \in \mathbb{Z}_p^* := \mathbb{Z}_p/p\mathbb{Z}_p \), set

\[\langle x : q \rangle = w^{-1}(x) \left(\frac{1-qx}{1-q} \right). \]

Let \(a \) and \(N \) be positive integers with \((p, a) = 1 \) and \(p \mid N. \) We now introduce the following

\[\tilde{E}_q^{(\alpha)}(s, a, N : q^N) = w^{-1}(a) \langle x : q^\alpha \rangle^s \sum_{j=0}^{\infty} \left(\begin{array}{c} s \cr j \end{array} \right) q^{\alpha aj} \left(\frac{1-q^{\alpha N}}{1-q^{\alpha a}} \right)^j \tilde{G}^{(\alpha)}_{j, q^N}. \]

In particular, if \(m+1 \equiv 0(\text{mod} \ p-1) \), then we have

\[\tilde{E}_q^{(\alpha)}(m, a, N : q^N) = \left(\frac{1-q^{\alpha a}}{1-q^{\alpha}} \right)^m \sum_{j=0}^{m} \left(\begin{array}{c} m \cr j \end{array} \right) q^{\alpha aj} \tilde{G}^{(\alpha)}_{j, q^N} \left(\frac{1-q^{aN}}{1-q^{\alpha a}} \right)^j \]

\[= \left(\frac{1-q^{aN}}{1-q^{\alpha}} \right)^m \int_{\mathbb{Z}_p} \left(\frac{1-q^{aN}(\xi+\frac{\alpha}{\alpha})}{1-q^{\alpha a N}} \right)^m d\mu_{q^\alpha}(\xi). \]
Then, $\tilde{E}_q^{(a)}(m, a, N : q^N)$ is a continuous p-adic extension of

$$\left(1 - q^{aN}\right) \frac{m}{m+1} \tilde{G}_{m+1,q^N}^{(a)} \left(\frac{a}{N}\right).$$

Suppose that $[.]$ be the Gauss’ symbol and let $\{x\} = x - [x]$. Thus, we are now ready to treat q-extension of the higher order Dedekind-type DC sums $\tilde{S}_{m,q}^{(\alpha)}(h, k : q)$ in the form:

$$\tilde{S}_{m,q}^{(\alpha)}(h, k : q) = \sum_{M=1}^{k-1} (-1)^{M-1} \left(1 - q^{\alpha M}\right) \int_{\mathbb{Z}_p} \left(1 - q^{\alpha(i\frac{hM}{k}+\frac{h}{k})}\right)^m \, d\mu_q(\xi).$$

If $m+1 \equiv 0 \pmod{p-1}$,

$$\sum_{M=1}^{k-1} (-1)^{M-1} \left(1 - q^{\alpha M}\right) \left(1 - q^{\alpha k}\right) \int_{\mathbb{Z}_p} \left(1 - q^{\alpha k(hM/k+1)}\right)^m \, d\mu_q(\xi)$$

$$= \sum_{M=1}^{k-1} (-1)^{M-1} \left(1 - q^{\alpha M}\right) \left(1 - q^{\alpha k}\right) \int_{\mathbb{Z}_p} \left(1 - q^{\alpha k(hM/k+1)}\right)^m \, d\mu_q(\xi)$$

where $p \mid k, (hM, p) = 1$ for each M. Via the equation (1), we easily state the following

$$\int_{\mathbb{Z}_p} \left(1 - q^{\alpha(x+\xi)}\right)^k \, d\mu_q(\xi)$$

$$= \left(1 - q^{\alpha m}\right)^k \left(1 + q\right) \sum_{i=0}^{m-1} (-1)^i \int_{\mathbb{Z}_p} \left(1 - q^{\alpha m(\xi+i)}\right)^k \, d\mu_q(\xi).$$

Due to (6) and (7), we easily obtain

$$\int_{\mathbb{Z}_p} \left(1 - q^{\alpha N}\right)^m \int_{\mathbb{Z}_p} \left(1 - q^{\alpha N(\xi+\frac{a}{N})}\right)^m \, d\mu_q(\xi)$$

$$= \frac{1 + q^N}{1 + q^{Np}} \sum_{i=0}^{p-1} (-1)^i \left(1 - q^{\alpha Np}\right)^m \int_{\mathbb{Z}_p} \left(1 - q^{\alpha Np(\xi+i)}\right)^m \, d\mu_q(\xi).$$

Thanks to (6), (7) and (8), we discover the following p-adic integration:

$$\tilde{E}_q^{(a)}(s, a, N : q^N) = \frac{1 + q^N}{1 + q^{Np}} \sum_{0 \leq i \leq p-1 \atop a + iN \neq 0 \pmod{p}} (-1)^i \tilde{E}_q^{(a)}(s, (a + iN)pN, p^N : q^{pN}).$$

63
On the other hand,
\[
\tilde{E}_q^{(\alpha)}(m, a, N : q^N) = \left(1 - q^{\alpha N}\right)^m \int_{\mathbb{Z}_p} \left(1 - q^{\alpha N(\xi + \frac{1}{q})}\right)^m d\mu_{q^N}(\xi)
\]
\[
- \left(1 - q^{\alpha NP}\right)^m \int_{\mathbb{Z}_p} \left(1 - q^{\alpha p^N(\xi + \frac{a + N}{p})}\right)^m d\mu_{q^N}(\xi)
\]
where \((p^{-1}a)_N\) denotes the integer \(x\) with \(0 \leq x < N\), \(px \equiv a\) (mod \(N\)) and \(m\) is integer with \(m + 1 \equiv 0\) (mod \(p - 1\)). Therefore, we can state the following
\[
\sum_{M=1}^{k-1} (-1)^{M-1} \left(1 - q^{\alpha M}\right)^{m+1} \tilde{S}_{m,q}^{(\alpha)}(h, k : q^k) - \left(1 - q^{\alpha k}\right)^{m+1} \left(1 - q^{\alpha kp}\right)^m \tilde{S}_{m,q}^{(\alpha)}((p^{-1}h) : k : q^{pk})
\]
where \(p \nmid k\) and \(p \nmid hm\) for each \(M\). Thus, we obtain the following definition, which seems interesting for further studying in theory of Dedekind sums.

Definition 2.1 Let \(h, k\) be positive integers with \((h, k) = 1\), \(p \nmid k\). For \(s \in \mathbb{Z}_p\), we define \(p\)-adic Dedekind-type DC sums as follows:
\[
\tilde{S}_{p,q}^{(\alpha)}(s : h, k : q^k) = \sum_{M=1}^{k-1} (-1)^{M-1} \left(1 - q^{\alpha M}\right)^{m+1} \tilde{E}_q^{(\alpha)}(m, hM, k : q^k).
\]

As a result of the above definition, we derive the following theorem.

Theorem 2.2 For \(m + 1 \equiv 0\) (mod \(p - 1\)) and \((p^{-1}a)_N\) denotes the integer \(x\) with \(0 \leq x < N\), \(px \equiv a\) (mod \(N\)), then, we have
\[
\tilde{S}_{p,q}^{(\alpha)}(s : h, k : q^k) = \left(1 - q^{\alpha k}\right)^{m+1} \tilde{S}_{m,q}^{(\alpha)}(h, k : q^k)
\]
\[
- \left(1 - q^{\alpha k}\right)^{m+1} \left(1 - q^{\alpha kp}\right)^m \tilde{S}_{m,q}^{(\alpha)}((p^{-1}h) : k : q^{pk}).
\]

In the special case \(\alpha = 1\), our applications in theory of Dedekind sums resemble Kim’s results in [10]. These results seem to be interesting for further studies in [9], [11] and [18].

References

