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On subsets of finite Abelian groups
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Abstract: Let D(G) be the maximal cardinality of a set A ⊆ G that contains no non-trivial
solution to x1 + · · ·+ xs − sxs+1 = 0 with xi ∈ A (1 ≤ i ≤ s+ 1). Let

d(n) = sup
rk(H)≥n

D(H)

|H|
,

where rk(H) is the rank of H. We prove that for any n ∈ N, d(n) ≤ C
ns−2 , where C is a fixed

constant depending only on s.
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1 Introduction

For any natural number m ≥ 3, let r ∈ (Z \ {0})m satisfy r1 + · · ·+ rm = 0. Given a non-trivial
finite Abelian group G, we can write G ' Zk1⊕· · ·⊕Zkn , where Zki is a non-trivial cyclic group
of order ki (1 ≤ i ≤ n) and ki|ki−1 (2 ≤ i ≤ n). We let rk(G) = n denote the rank of G. A
solution x of r1x1 + · · · + rmxm = 0 is called trivial if xi = xj for any i 6= j. Otherwise, we
say that a solution x is non-trivial. Let Dr(G) be the maximal cardinality of a set A ⊆ G that
contains no non-trivial solution to r1x1 + · · ·+ rmxm = 0 with xi ∈ A (1 ≤ i ≤ s), and write

55



dr(n) = sup
rk(G)≥n

Dr(G)

|G|
.

Note thatD(1,1,−2)(G) is the maximum size of a subsetA ⊆ G free from non-trivial three-term
arithmetic progressions.

Meshulam [3] showed that if gcd(|G|, 2) = 1, then d(1,1,−2)(G) ≤ |G|/ rk(G). Lev [1] later
established that d(1,1,−2)(G) ≤ 2/ rk(2G), where 2G = {2x : x ∈ G}. Liu and Spencer [2]
proved that for any fixed r ∈ (Z \ {0})m satisfying r1+ · · ·+ rm = 0, there exists a positive con-
stantC(r) such that whenever gcd(|G|, k1) = 1, we have dr(G) ≤ C(r)/(rk(G))m−2. In this brief
note, we establish a similar theorem without a condition on the gcd when r = (1, 1, . . . , 1,−s) ∈
(Z \ {0})s+1 and s ≥ 3. Namely, we prove the following theorem.

Theorem 1. For s ≥ 3, ~r = (11, . . . , 1s,−s), and

C = max

{(
2s− 4

e log(2)

)s−2√
s2 + s, 2(2s−1 − 2)s−2

}
,

we have that for all n ∈ N, d(n) ≤ C/ns−2.

2 Proof of Theorem 1

Let s ≥ 3 and ~r = (1, . . . , 1,−s). For a finite Abelian group G, let Ĝ denote the character group
of G, which is the set of all homomorphisms from G to C×. Write χ0 for the trivial character. For
1 ≤ i ≤ s+ 1, let

fi(χ) =
∑
x∈A

χ(rix) =
∑
x∈A

χri(x).

In what follows, for convenience, we write D(G) in place of Dr(G) and d(n) in place of
dr(n). Before proving Theorem 1, we establish two lemmas necessary for our proof.

Lemma 2. Let G be a finite Abelian group, and suppose that A ⊆ G contains no non-trivial
solution to x1 + · · ·+ xs − sxs+1 = 0 with xi ∈ A (1 ≤ i ≤ s+ 1). Then,

∑
χ∈Ĝ

f1(χ)f2(χ) · · · fs+1(χ) ≤ |G| |A|s−1
(
s+ 1

2

)
.

Proof. We have that∑
χ∈Ĝ

f1(χ)f2(χ) · · · fs+1(χ) =
∑
x1∈A

· · ·
∑

xs+1∈A

∑
χ∈G

χ(x1 + x2 + · · ·+ xs − sxs+1). (1)

By [4, Corollary on p. 63], ∑
χ∈Ĝ

χ(x) =

{
|G| , if x = 0,

0, if x 6= 0.
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Thus, the sum ∑
χ∈Ĝ

χ(x1 + · · ·+ xs − sxs+1)

detects whether or not r ·x = x1 + · · · + xs − sxs+1 = 0. Since A ⊆ G contains no non-trivial
solution to x1 + · · · + xs − sxs+1 = 0 with xi ∈ A (1 ≤ i ≤ s + 1), all such solutions must be
trivial, implying that∑

x1∈A

· · ·
∑

xs+1∈A

∑
χ∈G

χ(r ·x) ≤ |G|
∑

1≤i<j≤s+1

|{x ∈ As+1 : xi = xj, r ·x = 0}|. (2)

For any of the
(
s+1
2

)
choices of 1 ≤ i < j ≤ s + 1, there exists an element k ∈ {1, . . . , s} \

{i, j}. There are |A|s−1 choices of (x1, . . . , xk−1, xk+1, . . . , xs+1) ∈ As where xi = xj , and given
any such choice of (x1, . . . , xk−1, xk+1, . . . , xs+1), x ∈ Gs+1 is a solution of r ·x = 0 if and only

if xk = −
s+1∑
l=1
l 6=k

rlxl. Thus, for any 1 ≤ i < j ≤ s+ 1,

|{x ∈ As+1 : xi = xj, r ·x = 0}| ≤ |A|s−1. (3)

Upon combining (1), (2), and (3), the lemma follows.

Lemma 3. Let G be a finite Abelian group with rk(G) ≥ n, and suppose that A ⊆ G contains
no non-trivial solution to x1 + · · ·+ xs − sxs+1 = 0 with xi ∈ A (1 ≤ i ≤ s+ 1). Then,∑

χ∈Ĝ

f1(χ)f2(χ) · · · fs+1(χ) ≥ |A|s+1 − |G||A|2
(
d(n− 1)|G| − |A|

)s−2
.

Proof. Note that∑
χ∈Ĝ

f1(χ) · · · fs+1(χ) = f1(χ0) · · · fs+1(χ0) +
∑

χ∈Ĝ\{χ0}

f1(χ) · · · fs+1(χ)

= |A|s+1 +
∑

χ∈Ĝ\{χ0}

f1(χ) · · · fs+1(χ) (4)

≥ |A|s+1 −

∣∣∣∣∣∣
∑

χ∈Ĝ\{χ0}

f1(χ) · · · fs+1(χ)

∣∣∣∣∣∣ .
By [2, Lemma 3],

sup
χ∈Ĝ\{χ0}

∣∣∣∣∣∑
x∈A

χ(x)

∣∣∣∣∣ ≤ d(n− 1)|G| − |A|,

and by [4, Corollary on p. 63],

∑
χ∈Ĝ\{χ0}

∣∣∣∣∣∑
x∈A

χ(x)

∣∣∣∣∣
2

≤
∑
χ∈Ĝ

∣∣∣∣∣∑
x∈A

χ(x)

∣∣∣∣∣
2

=
∑
x,y∈A

∑
χ∈Ĝ

χ(x− y) =
∑
x,y∈A
x=y

|G| = |G||A|.
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Therefore,∣∣∣∣∣∣
∑

χ∈Ĝ\{χ0}

f1(χ) · · · fs+1(χ)

∣∣∣∣∣∣ ≤ |A|
∑

χ∈Ĝ\{χ0}

|f1(χ) · · · fs(χ)|

= |A|
∑

χ∈Ĝ\{χ0}

∣∣∣∣∣∑
x∈A

χ(x)

∣∣∣∣∣
s

(5)

≤ |A|
(
d(n− 1)|G| − |A|

)s−2 ∑
χ∈Ĝ\{χ0}

∣∣∣∣∣∑
x∈A

χ(x)

∣∣∣∣∣
2

= |G||A|2
(
d(n− 1)|G| − |A|

)s−2
.

The lemma now follows by combining (4) and (5).

We are now in a position to prove Theorem 1.

Proof. (of Theorem 1) We proceed by induction on n. We have d(1) ≤ 1 ≤ C/1s−2. Suppose
now that n ≥ 2 and that d(n − 1) ≤ C/(n − 1)s−2. Let G be a finite Abelian group with
rk(G) ≥ k, and suppose that A ⊆ G contains no non-trivial solution to x1+ · · ·+xs− sxs+1 = 0

with xi ∈ A (1 ≤ i ≤ s + 1). By proving that |A|/|G| ≤ C/ns−2, we establish the inequality
d(k) ≤ C/ns−2.

Combining Lemmas 2 and 3 yields

|A|s+1 − |G||A|2
(
d(n− 1)|G| − |A|

)s−2 ≤ |G| |A|s−1(s+ 1

2

)
. (6)

We split our analysis into two cases.

• Case 1. |A|
s+1

2
≤
(
s+ 1

2

)
|G| |A|s−1

We may re-write the above inequality as |A||G| ≤
√

s2+s
|G| . Because rk(G) ≥ n, |G| ≥ 2n.

Hence,
|A|
|G|
≤
√
s2 + s

2n
=

1

ns−2

√
(s2 + s)n2s−4

2n
.

By considering the first and second derivative, one can show that for x ≥ 1,
√

(s2+s)x2s−4

2x

as a function of x obtains a global maximum of
(

2s−4
e log(2)

)s−2√
s2 + s when x = (2s −

4)/ log(2). Thus, |A|/|G| ≤ C/ns−2.

• Case 2. |A|
s+1

2
>

(
s+ 1

2

)
|G| |A|s−1

By combining the above inequality with (6), we obtain that

|A|s+1

2
< |G||A|2

(
d(n− 1)|G| − |A|

)s−2
.

We may re-write this inequality as
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|A|
|G|

+ 2
−1
s−2

(
|A|
|G|

) s−1
s−2

< d(n− 1) ≤ C

(n− 1)s−2
. (7)

Note that for x ≥ 2, the function x
((

x
x−1

)s−2 − 1
)

of x is decreasing. Hence, n
((

n
n−1

)s−2 − 1
)
≤

2s−1 − 2 and

2ns−2

((
n

n− 1

)s−2
− 1

)s−2

≤ 2(2s−1 − 2)s−2 ≤ C.

Therefore, (
n

n− 1

)s−2
− 1 ≤

(
C

2ns−2

) 1
s−2

= 2
−1
s−2 · C

1
s−2

n
,

which implies that

C

(n− 1)s−2
− C

ns−2
≤ 2

−1
s−2 · C

s−1
s−2

ns−1
= 2

−1
s−2

(
C

ns−2

) s−1
s−2

. (8)

By (7) and (8), we have

|A|
|G|

+ 2
−1
s−2

(
|A|
|G|

) s−1
s−2

<
C

ns−2
+ 2

−1
s−2

(
C

ns−2

) s−1
s−2

.

Since x + 2−1/(s−2)x(s−1)/(s−2) is an increasing function of x, it follows that |A|/|G| <
C/ns−2.

The theorem now follows by induction.
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