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Abstract: In the paper the new formulae for the prime counting function π:

π(n) =

⌊
n∑
k=2

(
k + 1

σ(k)

)k+√k⌋
; π(n) =

⌊
n∑
k=2

(
k + 1

ψ(k)

)k+√k⌋
(where σ is the sum-of-divisor function and ψ is the Dedekind’s function) are proposed and
proved. Also a general theorem (Theorem 1) is obtained that gives infinitely many explicit for-
mulae for the prime counting function π (depending on arbitrary arithmetic function with strictly
positive values, satisfying certain condition).
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AMS Classification: 11A25,11A41.

Used denotations

bc – denotes the floor function, i.e. bxc denotes the largest integer that is not greater than the real
non-negative number x; σ – denotes the so-called sum-of-divisor function, i.e. σ(1) = 1 and for
integer n > 1

σ(n) =
∑
d|n

d,

where
∑
d|n

means that the sum is taken over all divisors d of n; ψ – denotes Dedekind’s function,

i.e. ψ(1) = 1 and for integer n > 1

ψ(n) = n
∏
p|n

(
1 +

1

p

)
,

where
∏
p|n

means that the product is taken over all prime divisors p of n; π – denotes the prime

counting function, i.e. for any integer n ≥ 2, π(n) denotes the number of primes p, satisfying the
inequality p ≤ n.
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1 Introduction

In year 2001, the author (in [1]) proposed (for the first time) the following formula for the prime
counting function:

π(n) =
n∑
k=2

⌊
k + 1

σ(k)

⌋
.

Let θ is either σ or Dedekind’s function ψ. Then it is not hard to see that for any integer n ≥ 2

the formula

π(n) =
n∑
k=2

⌊
k + 1

θ(k)

⌋
is also true.

These results have motivated us for the results obtained in the present paper.

2 Preliminary results

Lemma 1. For any composite k > 1,

θ(k) ≥ k +
√
k. (1)

Proof. First we observe that for any k ≥ 1, σ(k) ≥ ψ(k). Let p ≥ 2 be the minimal prime divisor
of k. Then p ≤

√
k and from the obvious inequality

θ(k) ≥ k

(
1 +

1

p

)
we obtain

θ(k) ≥ k +
k

p
≥ k +

k√
k
= k +

√
k.

Hence (1) is true.
Lemma 1 is proved.

Lemma 2. Let the sequence {ck}∞k=2 is defined by

ck
def
=

(
1−
√
k − 1

k +
√
k

) k+
√
k√

k−1

, k = 2, 3, 4 . . . .

Then for any k ≥ 2, the inequality ck < e−1 holds.

Proof. The validity of the assertion is checked directly for k = 2, 3, 4, 5, 6. For k > 6 the function

g(k)
def
= k+

√
k√

k−1 is strictly increasing and tends to +∞. Also we have ck =
(
1− 1

g(k)

)g(k)
.

Hence, for k > 6 the validity of Lemma 2 holds from the fact, that the function h(x) def
=

(1− 1
x
)x is strictly increasing for x > 1 and tends to e−1.

25



3 Main results

Theorem 1. Let f is an arithmetic function with strictly positive values. If for f there exists a
composite number Tf > 1 such that the inequality

Tf−1∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
+

∞∑
k=Tf

e
−
√
k−1

k+
√
k
f(k)

< 1 (2)

holds, then for any integer n ≥ 2

π(n) =

⌊
n∑
k=2

(
k + 1

θ(k)

)f(k)⌋
. (3)

Remark 1. For Tf = 4, (2) is reduced to the condition
∞∑

k=Tf

e
−
√
k−1√
k+k

f(k)
< 1.

Remark 2. Further we suppose that Tf is the minimal composite number satisfying (2).

Proof. For n ≤ 3, (3) is true. Let n ≥ 4. Since k+1
θ(k)

= 1 for prime k, it is fulfilled

n∑
k=2

(
k + 1

θ(k)

)f(k)
= π(n) +

n∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
. (4)

Let n < Tf . Then n ≤ Tf − 1. Hence:

n∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
≤

Tf−1∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
< (due to (2)) < 1.

Therefore, (4) and the above inequality yield (3).
Let n ≥ Tf . Then:

n∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
=

Tf−1∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
+

n∑
k=Tf

k - composite

(
k + 1

θ(k)

)f(k)
. (5)

But

n∑
k=Tf

k - composite

(
k + 1

θ(k)

)f(k)
<

∞∑
k=Tf

k - composite

(
k + 1

θ(k)

)f(k)
< (because of Lemma 1)

<

∞∑
k=Tf

k - composite

(
k + 1

k +
√
k

)f(k)
<

∞∑
k=Tf

(
k + 1

k +
√
k

)f(k)
=

∞∑
k=Tf

c

√
k−1

k+
√
k
f(k)

k <

(because of Lemma 2) <

∞∑
k=Tf

e
−
√
k−1

k+
√
k
f(k)

. (6)
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From (5) and (6) we obtain:

n∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
<

Tf−1∑
k=4

k - composite

(
k + 1

θ(k)

)f(k)
+

∞∑
k=Tf

e
−
√
k−1√
k+k

f(k)
< (due to (2)) < 1. (7)

Now (4) and (7) yield (3).
Theorem 1 is proved.

The following Theorem may be considered as a Corollary from Theorem 1.

Theorem 2. For any integer n ≥ 2

π(n) =

⌊
n∑
k=2

(
k + 1

θ(k)

)k+√k⌋
. (8)

Proof. Let f(k) = k +
√
k, k = 2, 3, 4, . . . . Below we will show that for Tf = 18 the condition

(2) is fulfilled. This means that the inequality

17∑
k=4

k - composite

(
k + 1

θ(k)

)k+√k
+

∞∑
k=18

e−(
√
k−1) < 1 (9)

must hold.
Since it is fulfilled:

∞∑
k=18

e−(
√
k−1) < e

∫ ∞
17

e−
√
k dk = 2e

∫ ∞
√
17

t e−t dt = 2(1 +
√
17)e1−

√
17 = 0.451041 . . . < 0.46

and
17∑
k=4

k - composite

(
k + 1

θ(k)

)k+√k
≤

17∑
k=4

k - composite

(
k + 1

ψ(k)

)k+√k
= 0.50281 . . . < 0.51,

then (9) holds because 0.46 + 0.51 < 1.

Therefore, the condition (2) is verified for f(k) = k +
√
k and applying Theorem 1, (8) is

proved.
Theorem 2 is proved.
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