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1 Introduction

In this paper, we determine a relation between Jacobsthal number and prime Jacobsthal number
for twin prime numbers, and an inequality is found between Fibonacci Jacobsthal numbers.

Jacobsthal number is defined as [1, 2, 3]

Jn =
2n − (−1)n

3
.

The generalised form of n-th order (n ≥ 0) Jacobsthal number, Prime Jacobsthal number and
Fibonacci Jacobsthal number [1] are defined as

Js
n =

sn − (−1n)

s+ 1
(1)

JP s
n =

pns − (−1n)

ps+1

(2)

where pi is the i-th prime number (p0 = 2, p1 = 3, ...)

JF s
n =

fn
s − (−1n)

fs+1

(3)

where fi is the i-th Fibonacci number (f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, ...)
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Theorem 1. For all natural number m, such that 2m+ 1 and 2m+ 3 both are prime numbers,

(2m+ 3)JP n
s = (m+ 1)

n−1∑
x=0

Cn
x2

n−xJm
n−x

Theorem 2.
(2fs+1 + fs)JF

s+2
n > fs+1JF

s
n

2 Proof of Theorem 1

We know that twin prime numbers can be represented as ps = 2m + 1 and ps+1 = 2m + 3. So
we have

JP s
n =

pns − (−1n)

ps+1

=
(2m+ 1)n − (−1)n

2m+ 3
(4)

By binomial expansion for natural number n,

(2m+ 3)JP s
n = Cn

0 (2m)n + Cn
1 (2m)n−1(1) + Cn

2 (2m)n−212 + ...+

Cn
n−1(2m)n−(n−1) + Cn

n1
n − (−1)n

(2m+ 3)JP s
n = 2nmn + Cn

1 2
n−1mn−1 + Cn

2 2
n−2mn−2 + ...+

Cn
n−12

n−(n−1)mn−(n−1) + 1− (−1)n.

Adding and subtracting the following term on right hand side of above equation,

2n(−1)n + Cn
1 (2

n−1(−1)n−1) + Cn
2 (2

n−2(−1)n−2) + ...+ Cn
n−1(2

n−(n−1)(−1)n−(n−1)).

By grouping the corresponding terms, we get

(2m+3)JP s
n = 2n(mn− (−1)n)+Cn

1 2
n−1(mn−1− (−1)n−1)+Cn

2 2
n−2(mn−2− (−1)n−2)+ ...

+Cn
n−12

n−(n−1)(mn−(n−1) − (−1)n−(n−1)) + 2n(−1)n + Cn
1 2

n−1(−1)n−1

+Cn
2 2

n−2(−1)n−2 + ...+ Cn
n−12

n−(n−1)(−1)n−(n−1) + 1− (−1)n

(2m+3)JP s
n = 2n(mn− (−1)n)+Cn

1 2
n−1(mn−1− (−1)n−1)+Cn

2 2
n−2(mn−2− (−1)n−2)+ ...

+Cn
n−12

n−(n−1)(mn−(n−1) − (−1)n−(n−1)) + (−2)n + Cn
1 (−2)n−1

+Cn
2 (−2)n−2 + ...+ Cn

n−1(−2)n−(n−1) + 1− (−1)n

We know that

(−1)n = (−2 + 1)n = (−2)n + Cn
1 (−2)n−1 + Cn

2 (−2)n−2 + ...+ Cn
n−1(−2)n−(n−1) + 1.

Therefore,

(2m+3)JP s
n = 2n(mn−(−1)n)+Cn

1 2
n−1(mn−1−(−1)n−1)+Cn

2 2
n−2(mn−2−(−1)n−2)+ ...+

Cn
n−12

n−(n−1)(mn−(n−1) − (−1)n−(n−1)) + (−1)n − (−1)n.
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Dividing both sides by (m+ 1), we get(
2m+ 3

m+ 1

)
JP s

n = 2n
(
mn − (−1)n

m+ 1

)
+ Cn

1 2
n−1

(
mn−1 − (−1)n−1

m+ 1

)

+Cn
2 2

n−2

(
mn−2 − (−1)n−2

m+ 1

)
...+ Cn

n−12
n−(n−1)

(
mn−(n−1) − (−1)n−(n−1)

m+ 1

)
(
2m+ 3

m+ 1

)
JP s

n = 2nJm
n + Cn

1 2
n−1Jm

n−1 + Cn
2 2

n−2Jm
n−2 + ...+ Cn

n−1J
m
n−(n−1)

(
2m+ 3

m+ 1

)
JP s

n =
n−1∑
x=0

Cn
x2

n−xJm
n−x.

This implies that

(2m+ 3)JP n
s = (m+ 1)

n−1∑
x=0

Cn
x2

n−xJm
n−x.

This proves the theorem.

3 Proof of Theorem 2

For particular values of n and s, Js+2
n < Js

n . So we determine this generalised inequality.

JF s+2
n =

fn
s+2 − (−1)n

fs+3

From the definition of Fibonacci number, fs+2 = fs+fs+1 and fs+3 = fs+2fs+1. Therefore,
from binomial expansion

(2fs+1 + fs)JF
s+2
n = fn

s + Cn
1 f

n−1
s fs+1 + ...+ fn

s+1 − (−1)n

this implies

(2fs+1 + fs)JF
s+2
n > fs+1

(
fn
s − (−1)n

fs+1

)
Hence,

(2fs+1 + fs)JF
s+2
n > fs+1JF

s
n

This proves the theorem.
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