Notes on Number Theory and Discrete Mathematics
Vol. 19, 2013, No. 3, 21-23

Relations on Jacobsthal numbers

S. Arunkumar!, V. Kannan” and R. Srikanth?

1.2 School of Mechanical Engineering, Sastra University
Thanjavur—613 401, India

3 School of Humanities And Sciences, Sastra University
Thanjavur—613 401, India
e-mail: srikanth@maths.sastra.edu

Abstract: Relations between Jacobsthal numbers, prime Jacobsthal numbers and Fibonacci Ja-
cobsthal numbers are found out.

Keywords: Jacobsthal number, Fibonacci number, Twin primes.
AMS Classification: 11B37.

1 Introduction

In this paper, we determine a relation between Jacobsthal number and prime Jacobsthal number
for twin prime numbers, and an inequality is found between Fibonacci Jacobsthal numbers.
Jacobsthal number is defined as [1, 2, 3]

The generalised form of n-th order (n > 0) Jacobsthal number, Prime Jacobsthal number and
Fibonacci Jacobsthal number [1] are defined as
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where p; is the i-th prime number (py = 2,p; = 3, ...)
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where f; is the i-th Fibonacci number (fo =0, f1 =1, fo =1, f3=2, f4 =3,...)
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Theorem 1. For all natural number m, such that 2m + 1 and 2m + 3 both are prime numbers,
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(2m +3)JP! = (m+1)> _Cr2""Jr,
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Theorem 2.
(2fs+1 + fs)JFTf+2 > fs—&—lJFrf

2 Proof of Theorem 1

We know that twin prime numbers can be represented as p;, = 2m + 1 and ps1 = 2m + 3. So

we have
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By binomial expansion for natural number 7,
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Adding and subtracting the following term on right hand side of above equation,
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By grouping the corresponding terms, we get
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We know that
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Therefore,
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Dividing both sides by (m + 1), we get
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This implies that

(2m +3)JP! = (m+1)>_Cp2""Jr .

This proves the theorem.

3 Proof of Theorem 2

For particular values of n and s, J5*2 < J* . So we determine this generalised inequality.
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From the definition of Fibonacci number, f .o = fs+ fo11 and fo 3 = fs+2fs1. Therefore,
from binomial expansion

(2for1 + f)TF2 = £+ CTf 7 o+ oo 4 fly = (=1)"
this implies
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Hence,
(2f8+1 + fs)JFTf+2 > fs—&—lJF:L

This proves the theorem.
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