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1 Introduction 

Over eight centuries ago in Chapter XII of his book, Liber Abaci, Leonardo of Pisa (nicknamed 
Fibonacci) presented and solved his famous problem on the reproduction of rabbits in terms of 
the famous sequence which bears his name. Four centuries later, Albert Girard in 1634 gave 
the notation for the recurrence relation for the terms of the sequence in use today, namely 

 .11 −+ += nnn FFF  (1.1) 

Over the centuries since the Fibonacci sequence of integers has been applied to a myriad 
of mathematical applications, especially in number theory [1]. In particular, Kepler [6] 
observed that the ratio of consecutive Fibonacci numbers converges to the Golden Ratio φ. He 
also showed that the square of any term differs by unity from the product of the two adjacent 
terms in the sequence (Simson’s or Cassini’s Identity (3.2) below). 

In this paper we analyse the structure of the Fibonacci sequence in the context of the 
modular ring Z5 (Table 1) [2]. The underlying structure accounts for many of the unique 
properties of this fascinating sequence, particularly their congruence properties [7].  
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Class 50  51  52  53  54  
Row 5r0 5r1+1 5r2+2 5r3+3 5r4+4 

0 0 1 2 3 4 
1 5 6 7 8 9 
2 10 11 12 13 14 
3 15 16 17 18 19 
4 20 21 22 23 24 

Table 1. Rows of modular ring Z5 

2 Class patterns of Fibonacci numbers 

The pattern of the Fibonacci numbers in Z5 is displayed in Table 2. 
 

n 1 2 3 4 5 6 7 8 9 

Z5 51  51  52  53  50  53  53  51  54  
10 11 12 13 14 15 16 17 18 19 

50  54  54  53  52  50  52  52  54  51  

n 20 21 22 23 24 25 26 27 28 

Z5 50  51  51  52  53  50  53  53  51  
29 30 31 32 33 34 35 36 37 38 

54  50  54  54  53  52  50  52  52  54  

Table 2. Fibonacci numbers in Z5 

The patterns of the modular residues follow the form 55555 0 MNNN  in which the numbers 

5N  have the pattern 5555 2431  and the interstitial numbers 5M  have the pattern 5555 4312 . These 
patterns allow prediction of the class of Fn, and hence the right-end-digit (RED) from n (Table 3). 

 

Fn
* 

n for 5N  n for 5M  
(1,6)  

51  
19, 39, 59, 79, ... 
1, 21, 41, 61, ... 
2, 22, 42, 62, ... 

8, 28, 48, 68, ... 

(2,7) 
52  

14, 34, 54, 74, ... 
16, 36, 56, 76, ... 
17, 37, 57, 77, ... 

3, 23, 43, 63, ... 

(3,8) 
53  

4, 24, 44, 64, ... 
6, 26, 46, 66, ... 
7, 27, 47, 67, ... 

13, 33, 53, 73, ... 

(4,9) 
54  

9, 29, 49, 69, ... 
11, 31, 51, 71, ... 
12, 32, 52, 72, ... 

18, 38, 58, 78, ... 

(0,5) 
50  

0,5,10,15,20,...  

Table 3. Details of the patterns (Fn
*: Class of Fn) 
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There are many characteristics of the Fibonacci sequence that are directly related to this 
structure. We consider some of them here. They serve as examples for further analysis. 
Another approach would be to consider the algebra of F( 5 ) where F(x) is the characteristic 
polynomial associated with the recurrence relation (1.1) and is irreducible in the field F of its 
coefficients [8]. 

3 The relationship to the Golden Ratio 

If the measure of a line AB is given by Fn+1,nd AB is divided into two different sized segments, 
AC and CB, with CB>AC, then AB/CB = CB/AC approximately defines φ, the Golden Ratio if 
CB = Fn and AC = Fn-1, so that approximately 

 2
11 nnn FFF ≅−+  (3.1) 

However, as first noted by Kepler the two sides of (3.1) always differ by unity as we can 
see from the class structures (Table 4). 

 
 

n 
*

nF  ( )*2
nF  

*
1+nF  *

1−nF  ( )*11 −+ nn FF  

4 3,8 9,4 0,5 2,7 0,5 
41 1,6 1,6 1,6 0,5 0,5 
77 2,7 4,9 4,9 2,7 3,8 
92 4,9 6,1 3,8 4,9 7,2 

Table 4. Data from Tables 2, 3 

The equality is expressed in Simson’s Identity 

 n
nnn FFF )1(2

11 −+=−+  (3.2) 

 ( )111 /)1(// −−+ −+= nn
n

nnnn FFFFFF  (3.3) 

of which the second term on the right hand side is very small for large n; this is the error term 
in the Fibonacci approximation for φ [5]. 

 nnn FFF += ++ 36 4  (3.4) 

so that 

 ,1/4/ 36 =− ++ nnnn FFFF  (3.5) 

which when substituted into (3.2) yield 

 
⎩
⎨
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+−
−+

=
++

++
−+ .4

,,4

,36
3

36
3

11 oddnFFF
evennFFF

FFF
nnn

nnn
nnn  (3.6) 

Many other elegant relationships can be formed in this way. 
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4 “Squaring” rectangles 

An odd number of golden rectangles with sides equal to successive Fibonacci numbers can 
appear to fit into squares as “demonstrated” in Figure 1. 
 

 

Figure 1. “Squaring” the Golden Rectangle 

This is not drawn to scale, but essentially a golden rectangle of sides F5 and F7 units, and 
hence of area 65 square units, is transformed into a square of side F6 units and hence of area 64 
square units.  Of course, while the eye might just be deceived, Simson is not!  From Simson’s 
identity we get for odd n that 

 2
111

2
1 ++−− =++ nnnnnn FFFFFF  (4.1) 

The structure of the Fibonacci sequence in Z5 in Section 2 shows that this square sum 
depends on the constraints of the squares which occur only in Classes 50 , 51  and 54 , and the 
sums are also confined to these classes in harmony with this square (Table 5). 

 
Classes of Number of 

Products n 
1+nF  2

1+nF  

Class of 

11
2

1 +−− ++ nnnnn FFFFF  

3 53  54  51 + 52 + 51 = 54  
5 53  54  54 + 50 + 50 = 54  
7 51  51  54 + 54 + 53 = 51  
9 50  50  51 + 54 + 50 = 50  
11 54  51  50 + 50 + 51 = 51  
13 52  54  51 + 52 + 51 = 54  
15 52  54  54 + 50 + 50 = 54  
17 54  51  54 + 54 + 53 = 51  
19 50  50  51 + 54 + 50 = 50  
21 51  51  50 + 50 + 51 = 51  

Table 5. Classes of Sums from (4.1) 

A AB E

D B

C D

8 5 

5 5 

5 8 

8 

3 

5 

5 

5 

3 3 

E 

F

F C



70 
 

5 The Factor 11 

The result  
58/lim 6 +=+∞→

ϕnnn
FF  

from [4] was obtained from the above characteristics of the sequence. Moreover, the Class of 
the sum of ten consecutive integers is the same as the class of the seventh number in the ten. 
The seventh number times 11 equals the sum of the ten. This is consistent with 5111∈  and 

5551 aa =×  (Table 6). Note that the RED of the sum is the same as the RED of the seventh 
number, and since the RED of 11 is 1 it is the only integer to satisfy. 
 

Range of 
n 

Class of 
sum 

Class of 7th 
Integer, N7 

Class of 
751 N×  

1 – 10 53  53  53  

2 – 11 51  51  51  

3 – 12 54  54  54  

4 – 13 50  50  50  

5 – 14 54  54  54  

6 – 15 54  54  54  

7 – 16 53  53  53  

8 – 17 52  52  52  

9 – 18 50  50  50  

10 – 19 52  52  52  

Table 6. Class structure in sets of 10 integers 

The class structure of the 7th number in each set of ten integers is: 
 

53  51  54  50  54  54  53  52  50  52  
 
which corresponds to F7 on the Fn class pattern in Section 2. 

6 Periodicity of Fibonacci number right end digits 

A RED periodicity of 60 for integers was discovered in general in 1774 by Joseph Louis 
Lagrange [6].  However, this periodicity pattern is more complicated than previously assumed 
for the Fibonacci sequence. For even REDs the interval is 60, but for odd REDs the intervals 
can be 20 or 40 which indeed sum to 60, and for Class 50 the intervals are 30 (Table 7). 
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Class of Fn Fn
* n* n Δn 

0 0 30, 60, 90, 120, 150 30, 30, 30, 30 50  
5 5 15, 45, 75, 105, 135 30, 30, 30, 30 

1 21, 81, 141, 201 60, 60, 60, 60 
2 42, 102, 162, 222 60, 60, 60, 60 
8 48, 108, 168, 228 60, 60, 60, 60 

6 

9 39, 99, 159, 219 60, 60, 60, 60 
1 1, 41, 61, 101, 121 40, 20, 40, 20 
2 2, 22, 62, 82, 122 20, 40, 20, 40 
8 8, 28, 68, 88, 128 20, 40, 20, 40 

51  

1 

9 19, 59, 79, 119, 139 40, 20, 40, 20 
3 3, 63, 123, 183 60, 60, 60, 60 
4 54, 114, 174, 234 60, 60, 60, 60 
6 36, 96, 156, 216 60, 60, 60, 60 

2 

7 57, 117, 177, 237 60, 60, 60, 60 
3 23, 43, 83, 103, 143 20, 40, 20, 40 
4 14, 34, 74, 94, 134 20, 40, 20, 40 
6 16, 56, 76, 116, 136 40, 20, 40, 20 

52  

7 

7 17, 37, 77, 97, 137 20, 40, 20, 40 
3 33, 93, 153, 213 60, 60, 60, 60 
4 24, 84, 144, 204 60, 60, 60, 60 
6 6, 66, 126, 186 60, 60, 60, 60 

8 

7 27, 87.147, 207 60, 60, 60, 60 
3 13, 53, 73, 113, 133 40, 20, 40, 20 
4 4, 44, 64, 104, 124 40, 20, 40, 20 
6 26, 46, 86, 106, 146 20, 40, 20, 40 

53  

3 

7 7, 47, 67, 107, 127 40, 20, 40, 20 
1 51, 111, 171, 231 60, 60, 60, 60 
2 12, 72, 132, 192 60, 60, 60, 60 
8 18, 78, 138, 198 60, 60, 60, 60 

4 

9 9, 69, 129, 189 60, 60, 60, 60 
1 11, 31, 71, 91, 131 20, 40, 20, 40 
2 32, 52, 92, 112, 152 20, 40, 20, 40 
8 38, 58, 98, 118, 158 20, 40, 20, 40 

54  

9 

9 29, 49, 89, 109, 149 20, 40, 20, 40 

Table 7. Periodicities of Fibonacci REDs 



72 
 

7 Final comments 

The structure of the 2
nF  sequence is 

55555555555555555 44044110114404411  

which follows from the restricted distribution of the squares in Z5. This simple structure 
facilitates the formation of Pythagorean triples from Fn [1], and known results such as 

1,2
1

2
12 >+= −− nFFF nnn , 

and 

∑
=

+ +=
n

j
jn FF

1
2 1 . 

These can also be related to the structure. 
Finally, the interested reader might like to apply the foregoing to the Pellian sequences to 

compare the similarities and differences with the Fibonacci sequence [3]. 
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