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1 Introduction 

Many methods exist for finding real and complex solutions of algebraic equations such as 
quadratic, cubic and simultaneous equations with two and three variables [1, 3]. Integer 
Structure Analysis (ISA) can be used with these traditional methods to illuminate some of the 
related underlying number theoretic foundations [6]. In this paper, we provide examples of 
various types of equations using the modular ring Z5 and right-end-digits (REDs) (Table 1). In 
this ring each class has a characteristic RED structure that simplifies analysis. 

f(r) 05r  15 1 +r  25 2 +r  35 3 +r  45 4 +r  
Row 

Class 50  51  52  53  54  
0  0 1 2 3 4 
1  5 6 7 8 9 
2  10 11 12 13 14 
3  15 16 17 18 19 
4  20 21 22 23 24 

(table continues) 
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f(r) 05r  15 1 +r  25 2 +r  35 3 +r  45 4 +r  
Row 

Class 50  51  52  53  54  
5  25 26 27 28 29 
6  30 31 32 33 34 
7  35 36 37 38 39 
8  40 41 42 43 44 
9  45 46 47 48 49 

10  50 51 52 53 54 

Table 1. Rows of Z5 

2 Quadratic equations  

In the following sections we solve some simple algebraic equations with an ISA approach to 
show how it sheds some light on the underlying  number theoretic structure. 

1. .014175 2 =+− xx  (2.1) 

If x is odd then x* = 7, and if x is even, then x* = 2, so 

 .25 2 += rx  (2.2) 
Substituting (2.2) into (2.1) yields 
 .0325 2

2
2 =− rr  (2.3) 

Thus r2 = 0 or –3/25, and so x = 2 or 7/5. 

2. .03011)( 2 =+−≡ xxxf  (2.4) 
x can be odd or even. 

x* 1 3 5 7 9 x* 0 2 4 6 8
(x2)* 1 9 5 9 1 (x2)* 0 4 6 6 4
(–11x)* –1 –3 –5 –7 –9 (–11x)* 0 –2 –4 –6 –8
(30)* 0 0 0 0 0 (30)* 0 0 0 0 0
(f(x))* 0 6 0 2 8 (f(x))* 0 2 2 0 6

Table 2: Solution structure for Equation (2.4) 

Thus x* = 1 or 5 and x* = 0 or 6, but x ≠ 1 or 0, and so x = 5 or 6. Alternatively, use Z5, take 
x = 5r + a and substitute into (2.4).  If a = 6, the constant 30 is eliminated and we obtain 

 .0525 2 =+ rr  (2.5) 

Thus, r = 0 or –1/5 which gives x = 6 or 5. 
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3 Cubic equations  

1. .0543 =−+ xx  (3.1) 
x must be odd. 

x* 1 3 5 7 9
(x3)* 1 7 5 3 9
(4x)* 4 2 0 8 6
(-5)* –5 –5 –5 –5 –5
(f(x))* 0 4 0 6 0

Table 3: Structure for Equation (3.1) 

Thus x* = 1, 5 or 9, but 5 and 9 are too large, so x* = 1, and  

 x = 5r1 + 1. (3.2) 
Substituting into (3.1) yields r1 = 0 or 

 25r1
2 + 15r1 + 7 = 0. (3.3) 

Then using ,
2

42

a
acbb −±−

 we get 

 10
193

1
ir ±−

=  (3.4) 

so that 

 2
191,1 ix ±−

=  

 
2. x3 + 5x2 + 3x – 9 = 0. (3.5) 

x* 1 3 5 7 9
(5x2)* 5 5 5 5 5
(3x)* ±3 ±9 ±5 ±1 ±7
(x3)* ±1 ±7 ±5 ±3 ±9
(-q)* –9 –9 –9 –9 –9
(f(x))* 0 2 6 0 2

Table 4: Structure for Equation (3.5) 

From Table 4, x* = 1 or 7, but 7 is too large so 

 x = 5r1 + 1. (3.6) 
Substituting into (3.5) gives r1 = 0 and 

 25r1
2 + 40r1 + 16 = 0. (3.7) 

Thus r1 = 0 or –4/5, and so x = 1 or –3.  When x is negative, x* = –3, and so x =1, –3, –3. For 
other non-conventional number theoretic approaches to cubic equations see [2, 4, 5, 6]. 
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4 Simultaneous equations 

4.1 Two variables 
 
1.  3x + 7y = 27 (4.1) 
 5x + 2y = 16 (4.2) 
x must be even from (4.2), so from (4.1) y must be odd.  Since (5x)* = 0 and y is odd, only 
y* = 3 or (2y)* = 6.  Thus y = 3, 13, 23, ... but only y = 3 fits, so that the solution is 

x = 2, y = 3. 

2. x2 + 4y2 + 80 = 15x + 30y (4.3) 

 xy = 6 (4.4) 

From (4.4) x = 6/y which, when substituted into (4.3), gives 

 4y4 – 30y3 + 80y2 – 90y + 36=0 (4.5) 

The RED right hand side is zero, so (4y4 + 36)* = 0. Hence, y* =1, 2 or 3 and y = 1, 2, 3 
which fits (4.5) and so yields x = 6, 3, 2. But Equation (4.3) should have 4 roots, so we 
substitute (4.4) into (4.3) to get 

 x4 – 15x3 + 80x2 – 180x + 144 = 0. (4.6) 
Thus, 

 (x4 – 15x3 + 144)* = 0. (4.7) 

Apart from x = 6, 3 or 2, x* = 4 yields (6 – 0 + 4)* = 0, so that x = 4 and y = 3/2. Hence, 

{(x, y)} = {(6,1),(3,2),(2,3),(4,3/2)}. 

3. 3x2 – 5y2 = 28 (4.8) 
 3xy – 4y2 = 8 (4.9) 

From (4.8) we see that x and y must have the same parity, and then from (4.9) that they 
must both be even. Thus (x2)* = 6 only, but (y2)* = 0, 4 or 6. Hence x = ±4 or ±6, but y = 0, ±2, 
±8, ±4 or ±6. Since y < x, y* ≠ 6 or 8 and y ≠ 0. Therefore, 

x = ±4, ±6 and y = ±2, ±4. 
 

4.2 Three variables 

1. x + 2y + 2z = 11 (4.10) 
 2x + y + z = 7 (4.11) 
 3x + 4y + z = 14 (4.12) 

From (4.10) x is odd; from (4.12) z is odd, and so from (4.11) y is even. If we then 
subtract (4.11) from (4.12) we get 
 x + 3y = 7. (4.13) 

The x*, y* values which satisfy (4.13) are shown in Table 5. 
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x* 7 1 5 9 3 z in 
Equation  y* 0 2 4 6 8 

(4.10)  2 3    
(4.11)  – 3    
(4.12) –  3    

Table 5. x*, y* values for (4.13) 

Thus,  
x = 1, y = 2, z = 3. 

 

Note that if x = 5r + a and y = 5r + b, then a = 1 and b = 2, so that the solution classes are 
x ∈ 51 , y ∈ 52 , z ∈ 53 .  

2. x + 4y + 3z = 17 (4.14) 
 3x + 3y + z = 16 (4.15) 
 2x + 2y + z = 11 (4.16) 

From (4.16) z is odd, so from (4.14) x is even, and from (4.15) y is odd. If we then 
subtract (4.16) from twice (4.14) we get 

 6y + 5z = 23 (4.17) 

Thus y* = 3 and y = 3 fits so solution set is 

x = 2, y = 3, z = 1. 

3. 2x + 3y + 4z = 20 (4.18) 
 3x + 4y + 5z = 26 (4.19) 
 3x + 5y + 6z = 31 (4.20) 
 We subtract (4.19) from (4.20) to get 

 y + z = 5 (4.21) 

From (4.18), y is even, so from (4.21) z is odd and from (4.20) x is odd. Table 6 shows 
the values for y*, z* which are compatible with (4.21). 

y* 0 2 4 6 8 
z* 5 3 1 9 7 

 Table 6:  y*, z* values for (4.21) 

Hence, y ≠ 6, 8 (too large) and y ≠ 0, 4 from Equations (4.18) and (4.20). Thus the 
solution set is 

x = 1, y = 2, z = 3. 
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5 Complex roots 

1. x4 + x3 – 6x2 – 15x – 9 = 0. (5.1) 

Let x = 5r + a. Then, if the constant in (5.1) is to be cancelled when this value of x is 
substituted, a = 3, which yields r = 0 and x =3.  Equation (5.1) now reduces to  

 x3 + 4x2 + 6x + 3 = 0. (5.2) 

Again let x = 5r + a and substitute into (5.2). Elimination of the constant occurs when a = –1, 
and since r = 0 is a root then x = –1. Equation (5.2) then reduces to 

 x2 + 3x + 3 = 0. (5.3) 

We then use 
a

acbb
2

42 −±−  again to get the complex roots, with the complete solution set 

2
33,3,1 ix ±−

−=  

Note that 5r – 1 = (5(s – 1) + 4) ∈ 54 . 

 

2. x4 – 3x3 + 12x – 16 = 0. (5.4) 
Let x = 5r + a. Elimination of the constant yields a = ±2 which, when substituted into (5.4) 
both reduce the latter to 
 x3 – x2 – 2x + 8 = 0. (5.5) 

and r = 0 is one solution so that x = ±2. 
If x = 5r – 2 (to eliminate 8), then (5.5) becomes 

 25r2 – 35r + 14 = 0. (5.6) 
so that 

 ,
10

77 ir ±
=   (5.7) 

or .
2

7325 irx ±
=−=  The solution set is then {±2, 

2
73 i± }. 

 
3. x3 + 1 = 0. (5.8) 
With x = 5r – 1 the constant is eliminated.  Substitution into (5.8) yields r = 0 and 
 25r2 – 15r + 3 = 0. (5.9) 
or 

 ,
10

33 ir ±
=  (5.10) 

so that the solution set is {–1, 2)33( i± }. (Note that 5r – 2 = (5(s – 1) + 3) ∈ 53  in row 
(s – 1).) 
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6 Final comments 

Students should find the approach outlined here in the examples an interesting alternative to 
what can sometimes degenerate into a ‘symbol-shoving’ exercise. There is also potential for 
project work which extends this type of analysis to other types of equations and using other 
modular rings [6]. 
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