
Notes on Number Theory and Discrete Mathematics
Vol. 18, 2012, No. 3, 45–47

A note on sumsets and difference sets in Z/nZ
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1 Introduction

For a group G and subsets A,B ⊆ G, we define the sumset A + B = {x + y : x ∈ A, y ∈ B}
and the difference set A−B = {x− y : x ∈ A, y ∈ B}, and for m ∈ N, we write

mA = A+ A+ · · ·+ A︸ ︷︷ ︸
m times

.

In the problem session at the Conference in Number Theory [1], Todd Cochrane posed the
following question.

Question 1.1. Does there exist an absolute positive integer k such that if p is prime, A ⊆ Z/pZ,
and A− A = Z/pZ, then kA = Z/pZ?

The question can also be considered with the role of cyclic groups of prime order replaced
by cyclic groups, finite Abelian groups, or finite groups. In this paper, we restrict ourselves to
studying cyclic groups. For n ∈ N, define

k(n) = min{r ∈ N : ∀A ⊆ Z/nZ, A− A = Z/nZ ⇒ rA = Z/nZ}.

Question 1.1 is equivalent to showing whether or not the set {k(p) : p is prime} is finite. In
Section 2, we obtain the following upper bound on k(p) when p is prime.
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Theorem 1.2. Suppose that p is an odd prime. Then, k(p) ≤ 2dlog2 log2 pe.

Note that this theorem is not strong enough to answer Question 1.1, but it does imply that the
function of m defined by max{k(p) : p ≤ m, p is prime} cannot grow to quickly.

In Section 3, we describe computer searches used to find the values of k(n) in Table 1. Based
on the data in Table 1, it is conceivable that k(n) ≤ 4 for all n ∈ N; however, due to the
computational time required to compute k(n) for large values of n, our data is somewhat limited.

Table 1: Values of k(n)
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k(n) 1 1 2 2 2 3 3 3 3 3 3 3 3 3

n 15 16 17 18 19 20 21 22 23 24 25 26 27 28
k(n) 3 3 3 3 3 3 3 3 3 4 3 3 3 4

n 29 30 31 32 33 34 35 36 37 41 43 47 53
k(n) 4 4 4 4 4 4 4 4 4 4 4 4 4

2 Proof of Theorem 1.2

In this section, we obtain an upper bound for k(p) under the assumption that p is prime. We first
recall two theorems required for our proof.

Theorem 2.1 (Cauchy-Davenport Theorem). Let p be prime and A,B ⊆ Z/pZ be non-empty.
Then, |A+B| ≥ min{p, |A|+ |B| − 1}.

Proof. See [2, page 5].

Theorem 2.2 (Ruzsa’s Lemma). Let A,B,C be non-empty subsets of an additive group. Then,
|C||A−B| ≤ |A+ C||B + C|.

Proof. See [2, page 7].

We first use Theorem 2.2 to obtain a lower bound on |rA| when p is prime, A ⊆ Z/pZ, and
A− A = Z/pZ.

Lemma 2.3. Suppose that p is prime, A ⊆ Z/pZ, and A − A = Z/pZ. Then, for r ∈ N,
|rA| > p1−2−r

.

Proof. We proceed by induction on r. Since p = |A− A| ≤ |A|2, it follows that |A| ≥ dp1/2e >
p1−2−1

. Thus, the statement holds when r = 1. Suppose that the statement of the lemma holds
when r = m for some m ∈ N. Then, by applying Theorem 2.2,

p2−2−m

= p1−2−m

p < |mA||A− A| 6 |(m+ 1)A|2.

Upon taking the square root of both sides, we obtain that p1−2−(m+1)
< |(m + 1)A|. The lemma

now follows.

We are now in a position to prove Theorem 1.2.
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Proof. (of Theorem 1.2) Suppose that p is an odd prime and that A ⊆ Z/pZ with A−A = Z/pZ.
Let r = dlog2 log2 pe. Then, 2−r ≤ (log2 p)

−1. By Lemma 2.3,

|rA| > p1−2−r ≥ p1−(log2 p)
−1

=
p

2
.

Hence, by Theorem 2.1,
|(2r)A| ≥ min{p, 2|rA| − 1} ≥ min

{
p, 2

⌈p
2

⌉
− 1
}
= p.

This completes the proof of the theorem.

3 Data

By performing computations on a computer, we have established the values of k(n) in Table
1. For any subset A ⊆ Z/nZ, we have |A − A| ≤ |A|2 − |A| + 1. For composite values of
n ≤ 36 and prime values of n ≤ 23, an exhaustive search over all subsets A ⊆ Z/nZ satisfying
n ≤ |A|2 − |A|+ 1 was performed to calculate k(n).

For a prime p, if A ⊆ Z/pZ with A− A = Z/pZ and |A| ≥ (p+1)2

4p
, by Theorem 2.2,

(p+ 1)2

4
≤ |A||A− A| ≤ |A+ A|2,

and by Theorem 2.1,

|4A| ≥ min{p, 2|A+ A| − 1} ≥ min

{
p, 2

(
p+ 1

2

)
− 1

}
= p.

Hence, for primes p with 29 ≤ p ≤ 53, we established that k(p) = 4 by finding one set B ⊆ Z/pZ
with B − B = Z/pZ but 3B 6= Z/pZ and then doing an exhaustive search over all subsets
A ⊆ Z/pZ satisfying p ≤ |A|2 − |A|+ 1 and |A| < (p+1)2

4p
.
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