
28 

Notes on Number Theory and Discrete Mathematics 
Vol. 18, 2012, No. 2, 28–33 

The modular ring Z5 

J. V. Leyendekkers1 and A. G. Shannon2  
1 The University of Sydney, NSW 2006, Australia 

2 Faculty of Engineering & IT, University of Technology 
Sydney, NSW 2007, Australia 

e-mails: tshannon38@gmail.com, anthony.shannon@uts.edu.au 

Abstract: The characteristics of the modular ring Z5 are discussed. Each of the five classes 
is specific for two right-end-digits (REDs), even and odd. This facilitates analysis of the 
primitive Pythagorean triples, namely, the factors of components and the structure that prevents 
the two minor components from having REDs of (1,4), (5,6), (5,0) or (9,0). The RED feature is 
also useful in solving quadratic equations and the quick identification of modular classes. 
The distribution of powers within Z5 is complex compared with other modular rings. Even 

powers are restricted to three Classes for )2(24 442 Zrn   but only two Classes when 

)0(4 440 Zrn  . This power distribution is also useful in the analysis of power triples. 
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1 Introduction 

Modular rings have been shown to be useful for in-depth analyses in many studies in number 
theory [1] such as Pythagorean triples, power triples (n > 2), equations involving primes, 
Fibonacci and geometric sequences, and infinite series [1, 2, 6].  
 For modular rings Zn, n even, the classes contain same-parity integers, whereas with n 
odd, the classes contain mixed parity integers. For the odd modulo n, only n = 3 has been 
considered.  Here we look at n = 5.  We shall show that the modular ring Z5 is characterised by 
right-end-digit (RED) specific classes. We shall also consider related patterns for geometric 
sequences. 

2 The modular ring Z5  

For the decimal system Z5 might be expected to have some advantages such as each class has 

specific right-end-digits for even and odd integers. Obviously 50  will have REDs of 0 and 5 

(Tables 1 and 2). 
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f(r) 05r  15 1 r  25 2 r  35 3 r  45 4 r  
Row 

Class 50  51  52  53  54  
0  0 1 2 3 4 
1  5 6 7 8 9 
2  10 11 12 13 14 
3  15 16 17 18 19 
4  20 21 22 23 24 
5  25 26 27 28 29 
6  30 31 32 33 34 
7  35 36 37 38 39 
8  40 41 42 43 44 
9  45 46 47 48 49 

10  50 51 52 53 54 

Table 1. Rows of Z5 

Rows 
Class 

REDs of 
integers N Odd N Even N 

Rows for N | 3 

50  0,5 odd even 3t t  = 1, 2, 3,... 

51  1,6 even odd 1+3t t  = 0, 1, 2, 3, ... 

52  2,7 odd even 2+2t t  = 0 

53  3,8 even odd 3t t  = 0 

54  4,9 odd even 1+3t t  = 0 

Table 2. Rows of Z5 

In particular, the power structure is quite complex and depends on the class of 
the power, m, in Z4 (Table 3). The modular ring Z4 has four classes: ,04 ,14 ,24 43 , 

);(20 44 even ),(31 44 odd N = 4ri + i where i is the class. Class 42  has no powers and 43  has 
no even powers. 

 

m Class of m  Z4 Classes of Z5 which contain Nm (1 to 9) 

1, 5, 9, ... 41  14 1 r  55555 4,3,2,1,0  

2, 6, 10, ... 42  24 2 r  55555 1,4,4,1,0  

3, 7, 11, ... 43  34 3 r  55555 4,3,2,1,0  

4, 8, 12, ... 40  04r  55555 1,1,1,1,0  

Table 3. Power structure in Z5 

For m = 4r3 + 3, the 52  integers when raised to the power m fall in 53  whereas 53  in-

tegers raised to m fall in 52 . The class of the power is easily identified from the REDs: 5
3 32   

(REDs 3 and 8), whereas 5
3 23   (REDs 2 and 7). The row structure for odd squares in Z5 is 
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more complex than in Z4 as odd squares fall in three classes 50 , 51  and 54 . However, the rows 
are still related to the triangular and pentagonal numbers (Table 4). 

Class of N2 (odd) Row K Permitted n* 

51  24K/5 ½n(3n + 1) 0, 3, 5, 8 

N not divisible by 3  ½n(3n – 1) 2, 5, 7 
N divisible by 3 4(2 + 9n(n + 1))/5  1, 3, 6, 8 

54  (24K – 3)/5 ½n(3n + 1) 1, 2, 6, 7 
N not divisible by 3  ½n(3n – 1) 3, 8, 9 

N divisible by 3 1 + (36n(n + 1))/5  
3*35,0

7*29,4

5

5





NN

NN
 

*
50  (24K + 1)/5 ½n(3n + 1) 4, 9 

N not divisible by 3  ½n(3n – 1) 1, 6 
N divisible by 3 (9 + 36n(n + 1))/5  2, 7 

Table 4. Classes 50 , 51 , 54  (*Row/5 = square) 

As can be seen from the distribution of the powers, there will be less room for primes in 

Classes 51  and 54  so that more primes should occur in Classes 52  and 53  except in regions 

where there are few even powers. Since only 50  and 51  contain  

 N4m and 555 211  (no even powers) and 

 555 000  (common  factors),  
the equation 

  mmm QMN 444   (2.1) 

must have the class structure 

 555 101   (REDs 1 + 0 = 1) 
or 

 555 110   (REDs 5 + 6 = 1) 

These severe constraints lead to the invalidity of Equation (2.1). This has also been 

illustrated with the modular ring Z3 [7]. It is of interest to look at the structure [8] of primitive 

Pythagorean triples (pPts) in Z5 since 5 is always a factor of one of the components [4]. 

3 Primitive Pythagorean triples  

We have previously shown [4, 5] how integer structure analysis (ISA) in the context of 

modular rings illustrates how pPts always have 5 as a factor and one of the minor components 

(x or y) always has 3 as a factor whereas the major component z, cannot have 3 as a factor. A 

number of classes in Z5 do not have even powers so that the class structures of pPts in this 

modular ring are restricted (Table 5). 
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(x2)* Class (y2)* Class (z2)* Class 

1 51  0 50  1 51  

9 54  6 51  5 50  

5 50  4 54  9 54  

Table 5. Class constraints on pPt components 

The ((x2)*, (y2)*) RED couples (5,6), (1,4) and (5,0) are excluded because these have 
incompatible rows [3]. The absence of these RED structures in pPts and that of (9,0) are simply 
illustrated in Tables 6 and 7. 

(z2)* 
z* 

(a2 + b2)* 
((a2)*, (b2)*) 

x* 
(a2 – b2)* 

(ab)* 
y* 

(2ab)* 
(pPt)*

1 1, 9 
(1,0)(5,6)(9,0) 

(5,4) 
1, 9 

(1,0)(5,6)(3,0)(5,2) 
(7,0) 

0 101 

5 5 (1,4)(5,0)(9,6) 3, 5, 7 
(1,2)(1,8)(5,0)(3,6) 

(7,6) 
0, 4, 6 965 

9 (3, 7) (9,4)(1,6) 5 (3,2)(7,2)(1,6)(9,6) 2, 8 549 

Table 6. Right-end digits for pPts 

(a2)*
(b2*) 

1 5 9 

0 1 5 9 
4 5 9 3 
6 7 1 5 

Table 7. REDs for squares (a2 + b2)* 

As can be seen the main constraint is that z must equal a sum of squares [1] and that odd 
squares have REDs 1, 5, 9, and even squares have REDs 0, 4, 6. Thus pPt REDs for the squares 
of x, y, z are 101, 965 and 549. 

The Z5 modular ring has classes that are restricted to particular REDs. Thus for 50  all 

integers have a RED of 0 or 5 so that all integers in 50  have a factor of 5. This shows quite 

simply why one of the pPt components has a factor of 5 (Table 5). The fact that 3 is always a 
factor of one of the minor components may be shown using the row functions (Table 4) as done 
for Z4 [4]. This is simplified because the RED structures of pPts are so limited (Tables 6, 7). 

4 Geometric sequences 

The Z5 class patterns for geometric sequences (Table 8) show up certain characteristics of these 
numbers. 
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Sequences Function  Z5 Class Structure 

Triangular  12
1 nn  51 53 51 50 50  

Tetrahedral   216
1  nnn  51 54 50 50 50  

Pentagonal  133
1 nn  52 52 50 51 50  

  133
1 nn  51 50 52 52 50  

Pyramidal   1216
1  nnn  51 50 54 50 50  

Table 8. Geometric sequence patterns 

The triangular numbers show Class 53  in the pattern and pentagonal numbers show Class 

52  [1, 6]. These two sequences are related to the rows of odd squares. The other sequences 

show only those classes that contain even powers, that is, .4,0,1 555  This suggests that 

triangular and pentagonal numbers are more “row-related” and the others more directly 
“square-related”. 

5 Integer Structure Analysis and quadratic equations 

A few examples are given to show how ISA with Z5 can be used to solve quadratic equations 
with rational solutions.  This method does not involve square roots. 

(1) 0226 2  xx  (5.1) 

x must be even and x* = 2 (x* = 4 is too large) so that x = 5r2 + 2. Substituting into (5.1) gives 

 0115256 2
2

2  rr  (5.2) 

so that r2 = 0 or –23/30, and thus x = 2 or –11/6. 

(2) 021256 2  xx  (5.3) 

x will be odd and x* = 3 or 7 to satisfy REDs. 7 is obviously too big so x = 5r3 + 3.  
Substituting into Equation (5.3) yields 

 01130 3
2

3  rr  (5.4) 

so that r3 = 0 or –11/30, and thus x = 3 or 7/6. 

(3) 012115 2  xx  (5.5) 

If x is even, the lowest x* = 2, which is too large, so x must be odd. If x is positive, then x* = 7, 
which is too large, so x* = 3 and x = – (5r3 + 3).  Substitution into (5.5): 

 095125 3
2

3  rr  (5.6) 

so that r3 = 0 or –19/25, and thus x = –3 or 4/5.  The advantage of using Z5 is that this ring is 
RED specific for each class. 
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6 Final comments 

The simple classification of an integer from the RED has proved useful in some other number 
theory studies [1, 3]. The modular ring Z5 is characterised by RED-specific classes. This 
feature has been shown to be critical for power and factor identification as well as useful in 
solving quadratic equations. Another example is provided in Table 6, which neatly summarises 
the RED restrictions on pPts. 

The geometric sequences have distinct class patterns and hence RED patterns which are 
useful in the study of these numbers [6].  For instance, the rows of squares are functions of the 

triangular and pentagonal numbers, restricted to classes 50 , 51  and 52  or 53 . 
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