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Double inequalities on means via quadrature formula
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1 Introduction

Several eminent researchers explored the well known means respectively called Arithmetic mean,
Geometric mean and Harmonic mean in the literature in different verticals, these means respec-
tively given by [1, 2];

For a,b > 0, then

2ab

A(a,b):a+b’ G(a,b) =Vab  and  H(a,b) = =
a

2

In [3], the authors defined Oscillatory mean and its dual form and they obtained some inter-
esting results.
For a,b > 0 and a € (0, 1), then Oscillatory mean and its dual form are as follows;

O(a,b; ) = aG(a,b) + (1 — a)A(a,b) (1.1)
and
0D (a,b;a) = G(a,b)*A(a, b)' . (1.2)
For a,b > 0, then Seiffert’s mean is given by [1, 6];
b—a
Pla,b) = ———— 1.3
((l, ) Qtan_l (2;_2> ( )
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For a,b > 0 and r is a real number, then the power mean is given by [1];

@b
Mr(a,b)={ ( \2/&—6) ’ :ig (1.4)

Let n > 1 be a fixed natural number and [ an interval of real numbers, then for every a =
(ay,as, ...a,) € I", the arithmetic mean associated to a is defined as;

ay + ag + ... + ay
" .

Aplal =

Let I € R be an interval. If f : I — R is a convex(concave)function, then the well known
Jensen inequality says that;

; (a1 +ay+ ... —i—an) < () (f(al) + flag) + ... +f(an)) |

n n

which can also written in the following notation:

f(Anla]) < (Z)An[f(a)] (1.5)

If s and ¢ are two real parameters, a and b are positive numbers a # b, then the extended means
of s,t of a and b is given by [1];

a® b\ 3% ,
Gmmw*:{ o) et 7 (1.6)
) a®loga+b°logb\ s . _
exp (“EIRTER) L ifs =1,
and )
(%)Sit, if(s—t)st#0,a#b
exp (—%—i——asloga?:z:log?), ifs=t#0,a#b
Es(a,b) = (1.7)

exXp (s(as lozsa:b; 10gb)> ) s ZfS 7& O,t = 0, a 7é b
Vab, ifs=t=0
\ a ifa=>5

are respectively called the Gini means and the Stolarsky means.

Some particular cases of the Gini means and the Stolarsky means in intergal form are given
below.

For ¢t = 0, the Gini mean G, (a, b) coincides with the Holder mean of order s > 0 and for
s = 1, is an Arithmetic mean of a and b.

1

s b\ s b %
A”@w:(a; ):(ij/x%wﬁ,

for s = t = 0, the Gini mean G (a, b) coincides with the Geometric mean of a and b.

Gla,b) = Vab = [ — /bidm N
@0 = S \b—-a ), 22 ’
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for s = 1,¢ = 0, the Stolarsky mean £ ¢(a, b) coincides with the Logarithmic mean of @ and b.

b—a 11
Lia,b) = Inb—Ina (b—a/a de>

and for s = t = 1, the Stolarsky mean £ ;(a, b) coincides with the Identric mean of a and b.

b I
I(a,b) = . (a“) = exp (m/ lnxdx) .

This paper is based on certain inequalities satisfied by the 4-convex functions and Jensen
inequality ([2], [4], [5]), that is the functions which are differentiable 4-times and f ) (x) > 0 for
all values of z. Now recall the Simpson’s quadrature formula in the form of the lemma as below.

-1

Lemma: 1.1 If f € C*([a,b]) and V) (x) > 0, then the mean value of f

b
= bia/ f(x)dx

[f(a) 4 ( . b) ¥ f(b)]

[ =g [ ar () + ] - S o,

for some c € (a,b).

does not exceed the sum

| =

that is

2 Applications to some inequalities among means

In this section, some double inequalities involving important means are established by using
Simpson’s quadrature rule and Jensen inequality.

Theorem: 2.1 Ifa,b > 0, then holds the following inequality.

2H?(a,b) + M3 (a,b)
3

G*(a,b) < [ } < Mj(a,b).

Proof: According to Simpson’s quadrature formula,

[ = g [ ar () + ] - S o,

for some ¢ € (a,b).
Take f(z) = 2, from which f*(z) = 12 > 0, that is f(¥)(c) = 122 > 0, for some ¢ € (a,b),

then
< g @+ ar (50) + o] @
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After simple integration and simplification gives,

gy S5 [f@+ 1 (S5) +10). 22)

since f(z) = %, from which f®(z) = & > 0, for all « € (a,b), hence f(z) is convex function.
The well known Jensen inequality for convex functions says that;

f (a—;b) < f(a);f(b)7

then

6 2 2
By combining inequalities (2.2) and (2.3) leads to,

slr@sar (50) ero] < g [+ (M) pm] e

1 a+b 1

@ab) = é [f(a) +4f( 5 ) +f(b>] <clf@+2[f(0) +fOI+ )] @4

Replace f(a) = 5, f(b) = % and f(%?) = L=, in equation (2.4) gives,

: (=7

< 111 L9 1 n 1 N 1
6 |a? a? b2 b?
on rearranging leads to,

1 < 111 n 4 . 1 < 1 3 1 n 1
G?*(a,b) — 6 |a®> A2%(a,b) b*] T 6 a? b2
on substituting a®b? = G*(a, b) and a*+b* = 2M3(a, b), the above inequality takes the following
form,

1 < 1
G?*(a,b) ~— 6

1 a 1 n 1
a2 (aTer)z b2

G*a,b) 1],
T <M
G2(ab) =3 { 2(a,b) +2

Further, from the well known identity,

G*(a,b)

2
m] < M;(a,b) (2.5)

G?(a,b) = A(a,b)H(a,b)
on substituting in the equation (2.5) takes the form,

2H?(a,b) + M3 (a,b)
3

G*(a,b) < < Mj3(a,b). (2.6)
| |

This completes the proof of Theorem 2.1.
Note 1: In alternative form the double inequality (2.6) can be expressed as:

2H?(a,b) + A(a?,b?)
3

G*(a,b) < { } < A(a®,b?).

Theorem: 2.2 Ifa,b > 0, then the following inequality holds:

L(a,b)A(a,b) +2H (a,b)L(a,b)
3A(a,b)

H(a,b) < { ] < L(a,b).
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Proof: Take f(z) = 1, for which fW(z) = 22 > 0, for all z € (a,b), since a,b > 0. that is
f®(c) =& >0, for some ¢ € (a,b), then

Also for f(z) = 1, from which f®(z) = % > 0, forall z € (a,b), hence f(z) is convex
function.

Thus for f(z) = 9—16 the equations (2.1) and (2.3) together takes the following form;

[ g [r@ear (SF0) + o) < 2w+ (LD i)

x
2.7)
After calculus and replacing f(a) = L, f(b) = 1 and f(%2) = (é), in equation (2.7)
becomes, :
Inb—1Ina <1 l—i— 4 +1 <l{1+1}
b—a “6la (<) b| " 2[a b

is equivalently,

+

1 < 1 2A(a,b) 4 < A(a,b)

~ 6| G?*(a,b)  Ala,b)| ~ G*(a,b)
use the well known identity,

G?*(a,b) = A(a,b)H(a,b)
in the above inequality leads to,
L(a,b)A(a,b) +2H (a,b)L(a,b
3A(a,b)

This completes the proof of Theorem 2.2.

H(a,b) < { )} < L(a,b).

Theorem: 2.3 Ifa,b > 0, then the following inequality holds:
1
I(CL, b) > O(d) (CL, b7 5) > G(CL, b)

Proof: Let f(z) = Inz, then f®(z) = =} < 0and fW(z) = =% < 0, forall = € (a,b), hence
f(x) is concave function.
Thus for f(z) = Inz, the equations (2.1) and (2.3) together written as,

bia/ablnwdm > 2 {f(a) T af (“*b) +f(b)] > 1 [f(a)+4 (M> +f(b)}

2 6 2
(2.8)
After simple calculus and replacing f(a) = Ina, f(b) = Inband f(%t) = In(%2), then the
equation (2.8) takes the form,

4
blnb—alna_1 Zl in [ ab a+b len(ab)
b—a 6 2 2

is equivalently after canceling In both sides leads to,

I(a,b) > G3(a,b)A3 (a,b) > G(a, b) (2.9)

1

From the definition of dual oscillatory mean, the inequality (2.9) can be rewritten for @ = 3

as;
1
I(CL, b) > O(d) <a7 b7 g) > G(CL, b)
This completes the proof of Theorem 2.3.
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Lemma: 2.2 Ifa, b > 1, then P(a,b) > L(a,b).

Proof: From the definitions of Logarithmic mean and Seiffert’s mean, gives

1 1 Inb—Ina 2tan~"! (24:—2) (2.10)
L(a,b) P(a,b)  b—a b—a '
putb =t + 1,a = 1 in the equation (2.11), then
1 1 1 t
— == |ln(t+1)—2tan™" [ — 2.11
L(a,b)  P(a,b) ¢ {n( +1)—2tan (t+2)1 .11)
_ ! 2 . .
let h(t) = [In(t + 1) — 2tan~" (£5)]. then A'(t) = m > (. This shows that h(t) is
increasing function for ¢ > 0, then ﬁ - % > (), this proves that P(a,b) > L(a,b). Hence
the proof of lemma 2.2.
Corollary: 2.1 Ifa, b > 1, then In [g((jg))] > ?EZ%
Proof: The relation between Logarithmic mean and Identric mean is,
(b)) = —"— +b-1 and Inl(ab) = —— +ma—1
nl(a,b)= ———+Inb—1 an nl(a,b) = ———+1Ina—
’ L(CL, b) ’ L(CL, b)
on adding gives,
A(a,b)
InI(a,b) = - InG(a,b) — 1 2.12
(e b) = F +InGlah 212)

with simple computations and using lemma 2.2, the above inequality takes the form;

In {e[(a,b)] - A(a,b)'

Hence the proof of corollary 2.1.
Theorem: 2.4 If a,b > 0, then the following inequality holds:

A(atJrl7 bt+1) + 2]_]15+1(a7 b)
3G?%(a,b)

B3 (ah) < { } <A@, B,

Proof: Take f(z) = —&, for which f®(z) = ““)“*j,?fj?’“t*“) > 0, for all z € (a,b), since
t> 0.
and f@(z) = % > 0, for all z € (a,b), hence f(z) is convex function.
Thus, for f(z) = It—ﬂl, the equations (2.1) and (2.3) together expressed as;
1dd 1 .
b—a alt — 6 2 |attl o pttl

1 4 1

qt+l! - (aTer)tH - pt+1

on simplifying leads to,

bt — at

G*(a, b>t(b —)

[A(atﬂ b +2G2t+2(“’b>1 < A(a"* b

A+l (a,b)) | —
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use the well known identity,
G?*(a,b) = A(a,b)H(a,b)

in the above equation leads to,

A((I,H_l, bt+1) + 2Ht+1<a, b)
3G?(a,b)

E;_ll(a,b) < |: :| S A(atﬂ,btﬂ).

This completes the proof of Theorem 2.4.
Theorem: 2.5 Ifa,b > 0, then the following inequality holds:

A(a71, b1 4 24271 (g, b)
3

B < | | <@,
Proof: Take f(z) = 2%, for which f®(z) = (2t — 1)(2t — 2)(2t — 3)(2t — 4)2*~> > 0,
forall ¢ € (—oo,3] U [1,2]U[1,00), and fP(z) = (2t — 1)(2t — 2)2*~2 > 0, for all ¢ €
(=00, 3] U [1, 2] U [1, 00), hence f(z) is convex function.

Thus the proof of Theorem 2.5 follows for f(z) = 271,
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