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1 Introduction

Several eminent researchers explored the well known means respectively called Arithmetic mean,
Geometric mean and Harmonic mean in the literature in different verticals, these means respec-
tively given by [1, 2];

For a, b > 0, then

A(a, b) =
a+ b

2
, G(a, b) =

√
ab and H(a, b) =

2ab

a+ b
.

In [3], the authors defined Oscillatory mean and its dual form and they obtained some inter-
esting results.

For a, b > 0 and α ∈ (0, 1), then Oscillatory mean and its dual form are as follows;

O(a, b;α) = αG(a, b) + (1− α)A(a, b) (1.1)

and
O(d)(a, b;α) = G(a, b)αA(a, b)1−α. (1.2)

For a, b > 0, then Seiffert’s mean is given by [1, 6];

P (a, b) =
b− a

2 tan−1
(
b−a
b+a

) (1.3)
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For a, b > 0 and r is a real number, then the power mean is given by [1];

Mr(a, b) =

{ (
ar+br

2

) 1
r , r 6= 0√

ab, r = 0
(1.4)

Let n ≥ 1 be a fixed natural number and I an interval of real numbers, then for every a =

(a1, a2, ...an) ∈ In, the arithmetic mean associated to a is defined as;

An[a] =
a1 + a2 + ...+ an

n
.

Let I ∈ R be an interval. If f : I → R is a convex(concave)function, then the well known
Jensen inequality says that;

f

(
a1 + a2 + ...+ an

n

)
≤ (≥)

(
f(a1) + f(a2) + ...+ f(an)

n

)
,

which can also written in the following notation:

f(An[a]) ≤ (≥)An[f(a)] (1.5)

If s and t are two real parameters, a and b are positive numbers a 6= b, then the extended means
of s, t of a and b is given by [1];

Gs,t(a, b) =

{ (
as+bs

at+bt

) 1
s−t , ifs 6= t

exp
(
as log a+bs log b

as+bs

) 1
s , ifs = t,

(1.6)

and

Es,t(a, b) =



(
t(as−bs)
s(at−bt)

) 1
s−t

, if(s− t)st 6= 0, a 6= b

exp
(
−1
s

+ as log a−bs log b
as−bs

)
, ifs = t 6= 0, a 6= b

exp
(

as−bs
s(as log a−bs log b)

) 1
s
, ifs 6= 0, t = 0, a 6= b

√
ab, ifs = t = 0

a ifa = b

(1.7)

are respectively called the Gini means and the Stolarsky means.
Some particular cases of the Gini means and the Stolarsky means in intergal form are given

below.
For t = 0, the Gini mean Gs,0(a, b) coincides with the Holder mean of order s > 0 and for

s = 1, is an Arithmetic mean of a and b.

As,0(a, b) =

(
as + bs

2

) 1
s

=

(
s

bs − as

∫ b

a

x2s−1dx

) 1
s

,

for s = t = 0, the Gini mean G0,0(a, b) coincides with the Geometric mean of a and b.

G(a, b) =
√
ab =

(
1

b− a

∫ b

a

1

x2
dx

)−1
2

,
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for s = 1, t = 0, the Stolarsky mean E1,0(a, b) coincides with the Logarithmic mean of a and b.

L(a, b) =
b− a

ln b− ln a
=

(
1

b− a

∫ b

a

1

x
dx

)−1

and for s = t = 1, the Stolarsky mean E1,1(a, b) coincides with the Identric mean of a and b.

I(a, b) =
1

e

(
bb

aa

) 1
b−a

= exp

(
1

b− a

∫ b

a

lnxdx

)
.

This paper is based on certain inequalities satisfied by the 4-convex functions and Jensen
inequality ([2], [4], [5]), that is the functions which are differentiable 4-times and f (4)(x) ≥ 0 for
all values of x. Now recall the Simpson’s quadrature formula in the form of the lemma as below.

Lemma: 1.1 If f ∈ C4([a, b]) and f (4)(x) ≥ 0, then the mean value of f

M(f) =
1

b− a

∫ b

a

f(x)dx

does not exceed the sum
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
that is

1

b− a

∫ b

a

f(x)dx =
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)4

2880
f (4)(c),

for some c ∈ (a, b).

2 Applications to some inequalities among means

In this section, some double inequalities involving important means are established by using
Simpson’s quadrature rule and Jensen inequality.

Theorem: 2.1 If a, b > 0, then holds the following inequality.

G2(a, b) ≤
[

2H2(a, b) +M2
2 (a, b)

3

]
≤M2

2 (a, b).

Proof: According to Simpson’s quadrature formula,

1

b− a

∫ b

a

f(x)dx =
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)4

2880
f (4)(c),

for some c ∈ (a, b).

Take f(x) = 1
x2

, from which f 4(x) = 120
x6

> 0, that is f (4)(c) = 120
c6
> 0, for some c ∈ (a, b),

then
1

b− a

∫ b

a

1

x2
dx ≤ 1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
(2.1)
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After simple integration and simplification gives,

1

G2(a, b)
≤ 1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
. (2.2)

since f(x) = 1
x2

, from which f (2)(x) = 6
x4
> 0, for all x ∈ (a, b), hence f(x) is convex function.

The well known Jensen inequality for convex functions says that;

f

(
a+ b

2

)
≤ f(a) + f(b)

2
,

then
1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
≤ 1

6

[
f(a) + 4

(
f(a) + f(b)

2

)
+ f(b)

]
. (2.3)

By combining inequalities (2.2) and (2.3) leads to,

1

G2(a, b)
≤ 1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
≤ 1

6
[f(a) + 2 [f(a) + f(b)] + f(b)] (2.4)

Replace f(a) = 1
a2

, f(b) = 1
b2

and f(a+b
2

) = 1

(a+b
2 )

2 , in equation (2.4) gives,

1

G2(a, b)
≤ 1

6

[
1

a2
+ 4

1

(a+b
2

)2
+

1

b2

]
≤ 1

6

[
1

a2
+ 2

(
1

a2
+

1

b2

)
+

1

b2

]
on rearranging leads to,

1

G2(a, b)
≤ 1

6

[
1

a2
+

4

A2(a, b)
+

1

b2

]
≤ 1

6

[
3

(
1

a2
+

1

b2

)]
on substituting a2b2 = G4(a, b) and a2+b2 = 2M2

2 (a, b), the above inequality takes the following
form,

G4(a, b)

G2(a, b)
≤ 1

3

[
M2

2 (a, b) + 2
G4(a, b)

A2(a, b)

]
≤M2

2 (a, b) (2.5)

Further, from the well known identity,

G2(a, b) = A(a, b)H(a, b)

on substituting in the equation (2.5) takes the form,

G2(a, b) ≤
[

2H2(a, b) +M2
2 (a, b)

3

]
≤M2

2 (a, b). (2.6)

This completes the proof of Theorem 2.1.
Note 1: In alternative form the double inequality (2.6) can be expressed as:

G2(a, b) ≤
[

2H2(a, b) + A(a2, b2)

3

]
≤ A(a2, b2).

Theorem: 2.2 If a, b > 0, then the following inequality holds:

H(a, b) ≤
[
L(a, b)A(a, b) + 2H(a, b)L(a, b)

3A(a, b)

]
≤ L(a, b).
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Proof: Take f(x) = 1
x
, for which f (4)(x) = 24

x5
> 0, for all x ∈ (a, b), since a, b > 0. that is

f (4)(c) = 24
c5
> 0, for some c ∈ (a, b), then

Also for f(x) = 1
x
, from which f (2)(x) = 2

x3
> 0, for all x ∈ (a, b), hence f(x) is convex

function.
Thus for f(x) = 1

x
, the equations (2.1) and (2.3) together takes the following form;

1

b− a

∫ b

a

1

x
dx ≤ 1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
≤ 1

6

[
f(a) + 4

(
f(a) + f(b)

2

)
+ f(b)

]
(2.7)

After calculus and replacing f(a) = 1
a
, f(b) = 1

b
and f(a+b

2
) = 1

(a+b
2 )

, in equation (2.7)

becomes,
ln b− ln a

b− a
≤ 1

6

[
1

a
+

4(
a+b
2

) +
1

b

]
≤ 1

2

[
1

a
+

1

b

]
is equivalently,

1

L(a, b)
≤ 1

6

[
2A(a, b)

G2(a, b)
+

4

A(a, b)

]
≤ A(a, b)

G2(a, b)

use the well known identity,
G2(a, b) = A(a, b)H(a, b)

in the above inequality leads to,

H(a, b) ≤
[
L(a, b)A(a, b) + 2H(a, b)L(a, b)

3A(a, b)

]
≤ L(a, b).

This completes the proof of Theorem 2.2.

Theorem: 2.3 If a, b > 0, then the following inequality holds:

I(a, b) ≥ O(d)(a, b;
1

3
) ≥ G(a, b).

Proof: Let f(x) = lnx, then f (2)(x) = −1
x2
< 0 and f (4)(x) = −6

x4
< 0, for all x ∈ (a, b), hence

f(x) is concave function.
Thus for f(x) = lnx, the equations (2.1) and (2.3) together written as,

1

b− a

∫ b

a

lnxdx ≥ 1

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
≥ 1

6

[
f(a) + 4

(
f(a) + f(b)

2

)
+ f(b)

]
(2.8)

After simple calculus and replacing f(a) = ln a, f(b) = ln b and f(a+b
2

) = ln(a+b
2

), then the
equation (2.8) takes the form,[

b ln b− a ln a

b− a
− 1

]
≥ 1

6

[
ln

(
ab

[
a+ b

2

]4)]
≥ 1

2
ln(ab)

is equivalently after canceling ln both sides leads to,

I(a, b) ≥ G
1
3 (a, b)A

1
3 (a, b) ≥ G(a, b) (2.9)

From the definition of dual oscillatory mean, the inequality (2.9) can be rewritten for α = 1
3

as;

I(a, b) ≥ O(d)(a, b;
1

3
) ≥ G(a, b).

This completes the proof of Theorem 2.3.
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Lemma: 2.2 If a, b > 1, then P (a, b) > L(a, b).

Proof: From the definitions of Logarithmic mean and Seiffert’s mean, gives

1

L(a, b)
− 1

P (a, b)
=

ln b− ln a

b− a
−

2 tan−1
(
b−a
b+a

)
b− a

(2.10)

put b = t+ 1, a = 1 in the equation (2.11), then

1

L(a, b)
− 1

P (a, b)
=

1

t

[
ln(t+ 1)− 2 tan−1

(
t

t+ 2

)]
(2.11)

let h(t) =
[
ln(t+ 1)− 2 tan−1

(
t
t+2

)]
, then h′(t) = 2t2

(t+1)(2t2+4t+4)
> 0. This shows that h(t) is

increasing function for t > 0, then 1
L(a,b)

− 1
P (a,b)

> 0, this proves that P (a, b) > L(a, b). Hence
the proof of lemma 2.2.

Corollary: 2.1 If a, b > 1, then ln
[
eI(a,b)
G(a,b)

]
> A(a,b)

P (a,b)
.

Proof: The relation between Logarithmic mean and Identric mean is,

ln I(a, b) =
a

L(a, b)
+ ln b− 1 and ln I(a, b) =

b

L(a, b)
+ ln a− 1

on adding gives,

ln I(a, b) =
A(a, b)

L(a, b)
+ lnG(a, b)− 1 (2.12)

with simple computations and using lemma 2.2, the above inequality takes the form;

ln

[
eI(a, b)

G(a, b)

]
>
A(a, b)

P (a, b)
.

Hence the proof of corollary 2.1.

Theorem: 2.4 If a, b > 0, then the following inequality holds:

Et−1
s,1 (a, b) ≤

[
A(at+1, bt+1) + 2H t+1(a, b)

3G2(a, b)

]
≤ A(at+1, bt+1).

Proof: Take f(x) = 1
xt+1 , for which f (4)(x) = (t+1)(t+2)(t+3)(t+4)

xt+5 > 0, for all x ∈ (a, b), since
t > 0.

and f (2)(x) = (t+1)(t+2)
xt+3 > 0, for all x ∈ (a, b), hence f(x) is convex function.

Thus, for f(x) = 1
xt+1 , the equations (2.1) and (2.3) together expressed as;

1

b− a
.
bt − at

atbt
≤ 1

6

[
1

at+1
+

4

(a+b
2

)t+1
+

1

bt+1

]
≤ 1

2

[
1

at+1
+

1

bt+1

]
on simplifying leads to,

G2(a, b)
bt − at

t(b− a)
≤ 1

3

[
A(at+1, bt+1) + 2

G2t+2(a, b)

At+1(a, b))

]
≤ A(at+1, bt+1)
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use the well known identity,
G2(a, b) = A(a, b)H(a, b)

in the above equation leads to,

Et−1
s,1 (a, b) ≤

[
A(at+1, bt+1) + 2H t+1(a, b)

3G2(a, b)

]
≤ A(at+1, bt+1).

This completes the proof of Theorem 2.4.

Theorem: 2.5 If a, b > 0, then the following inequality holds:

E2t−1
s,1 (a, b) ≤

[
A(a2t−1, b2t−1) + 2A2t−1(a, b)

3

]
≤ A(a2t−1, b2t−1).

Proof: Take f(x) = x2t−1, for which f (4)(x) = (2t − 1)(2t − 2)(2t − 3)(2t − 4)x2t−5 > 0,
for all t ∈ (−∞, 1

2
] ∪ [1, 3

2
] ∪ [1,∞), and f (2)(x) = (2t − 1)(2t − 2)x2t−3 > 0, for all t ∈

(−∞, 1
2
] ∪ [1, 3

2
] ∪ [1,∞), hence f(x) is convex function.

Thus the proof of Theorem 2.5 follows for f(x) = x2t−1.
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