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On sums of multiple squares

J. V. Leyendekkersl and A. G. Shannon’

! Faculty of Science, The University of Sydney
Sydney, NSW 2006, Australia

? Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia

e-mails: tshannon38@gmail.com, anthony.shannonQuts.edu.au

Abstract: The structural and other characteristics of the Hoppenot multiple square equation are
analysed in the context of the modular ring Zs. This equation yields a left-hand-side and a
right-hand-side sum equal to P,(247,+ 1) in which P,, T, represent the pyramidal and
triangular numbers, respectively. This sum always has 5 as a factor. Integer structure analysis
is also used to solve some related problems.
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1 Introduction

Hoppenot [2] pointed out that the sum of the squares of (n + 1) consecutive integers, the
greatest being 2n(n + 1), is equal to the sum of the squares of the next n integers, that is, in
notational form

2n%+2n 2n%+3n
2 2
2= Dk (1.1)
j=2n2+n k=2n*+2n+l

The first of such a series when n = 1 is the Pythagorean triple (3, 4, 5). Thus, the apparent
blandness of Hoppenot’s observation is misleading as these sums of squares have many
interesting features, including their structural characteristics, some of which are developed in
this paper.

The underlying pedagogical goals here are:

e knowledge: the conceptual framework of number theory [2];

e attitudes: the inherent attraction of the elegant [3]; and

e skills: notation as a tool of thought [4].

2 Functional » characteristics

The initial square on the left-hand-side of Equation (1.1) is given by (n(2n + 1))* and the sum,
S, will be



S = P,(24T, +1) 2.1)

in which
P = én(n +1)(2n+1), (2.2)
the Pyramidal numbers, and
T, =%n(n +1), (2.3)
the Triangular numbers [5, 8, 10]. Some examples are illustrated in Table 1.
N Left-hand side square Right-hand-side-squares
1| 324+4*=25 52 =25
2 110 +11> +12% =365 132 +14%* =365
3| 217 +22% +23% +24% =2030 252 +26* +27* =2030
4 | 36> +37% +38* +39% +40° =7230 41% +42% +43% + 44% = 7230
51552456 +57° +58% +597 +60> =19855 | 61° +62% + 637 + 64 + 65> =19855
6 | 7821792 +80% +812 +822 +83% + 842 85”2 +86% +87% +88> +89% + 90> = 45955
= 45955
7 1105% +106% +107% +108% +109% +110% + 1132 +114> +115% +116> +117* +118* +
1112 +1122% = 94220 119> =94220

Table 1. Examples of Hoppenot’s equation

Since other Pythagorean triples are embedded within some of the sums, these may be
reduced by replacing two squares by one (Table 2). Odd integers of the form (47, + 1) may also
be sums of squares so that these may also be replaced. For example,

2561 =407 +31° = 44 +25% (2.4)

These squares could be substituted into the right-hand-side of the n = 4 square function.
Note that the first numbers in each of the left-hand side squares, namely, {3, 10, 21, 36, 55, 78,
105, ...} are elements of the set of coefficients of periodic polynomials [4], and the first
numbers in each of the right-hand squares constitute the sequence of centred equation numbers,
namely, {5, 13, 25, 41, 61, 85, 113, ...} [10].

n Left-hand side square Right-hand-side-squares

2110° +11° =221 5% +14° =221

31 2174+22°+23> =1454 77 +26° +27* =1454

515524572 +58%+59% =13119 1124332+ 622 +632 +64% =13119
552 +56% +57% + 582 +59% =16255 11 + 627 + 63° +64° +65° =16255

6 | 78 +79% +81% + 827 +83%> =32499 13 +397 +86” +87% +88° +90° = 32499

711052 +106% +107% +109% +110% +1112 152 +45% +114> +1152 +116> +118% +
=70012 1192 =70012

Table 2. Embedding Pythagorean triples from Table 1
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The distribution of odd and even squares depends on n (Table 3).

n Number of odd terms | Number of even terms
Left-hand side squares
odd Ya(n+1) Ya(n+1)
even Von Vin+1
Right-hand side squares
odd Ya(nm+1) Ya(n—1)
even Van Van

Table 3. Distribution of

even and odd squares

3 Right-end-digit (RED) Analysis

The sum § of the squares always has a factor 5 (cf [9]). This can be illustrated by analysing the
REDs (which is essentially the same as working in Zj(). With

S = f(n).g(n)
f(n)= % n(n+1)(2n+1)
g(n)=12n(n+1)+1

3.1)

the RED of each function is given from »* (where the asterisk indicates the RED) as

exemplified in Table 4.

n* (fm)=* | (gm)* | S*
0 5 1 5
1 1 5 5
2 5 3 5
3 4 5 0
4 0 1 0
5 5 1 5
6 1 5 5
7 0 3 0
8 4 5 0
9 5 1 5

Table 4. Right-end-digits (REDs)

Since the product is always 0 or 5, then 5 will always be a factor of S. This can also be

proved in Zs: when
then
and when

then

n=0,1,4 (mod)5),

0= % n(n+1)2n+1) (mod)5),

n =273 (mod)),

0=12n(n+1)+1 (mod5).
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4 Difference of squares

The sum of the difference of squares may be used to simplify the arithmetic; that is, the square
of each integer may be reduced to simple sums. For example, the first square when n = 4 is
given by
367 = (44> — 407 )+ (43> =397 )+ (427 - 382 )+ (412 - 37?)
= 4((44 +40)+ (43 +39)+ (42 +38)+ 41 +37)
=4x324 4.1)
=1296,
or
367 = (417 —40% )+ (427 =397 )+ (43> — 38 )+ (44 —37?)
=1x9> +3x9> +5x9> +7x9°, (4.2)

5 Modular ring structure

Integers may be more finely classified (than just even or odd, prime or composite, and so on)
by separating them into classes within modular rings [6, 7]. Here, we use the modular ring Z4
(Table 5), but other modular rings could equally be used.

Row fr) étro 4r1_ +1 4r2_ +2 4r3_ +3
Class | 0,4 14 24 3y

0 0 1 2 3

1 4 5 6 7

2 8 9 10 11

3 12 13 14 15

4 16 17 18 19

5 20 21 22 23

6 24 25 26 27

7 28 29 30 31

Table 5. Rows of Z4

0dd squares always fall in Class 14 and even squares in Class 04, but the sum S can fall

in any of the four classes and does so in a regular pattern, 14 14 24 24 34 34 04 04... (Table 6); it
is easy to see from the table how this can be generalised.
The squares of integers, N, are well characterised in modular rings [6]: in Z4 squares only

occur in Classes 04 (even) and 14 (odd). The even integer squares occur in the rows of Table 5
that are also squares. These rows can be reduced to yield the odd-integer rows except when
N = 2" when the square categorisation persists.

e  When 3 does not divide odd N, the rows equal 60, where Q, = %n(3n +1), the penta-

gonal numbers, and

e when 3 divides N, the rows equal (187, + 2), T,, the triangular numbers as in Equation
(2.3).
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n Class pattern LHS Class pattern RHS S

1 (34 )2 +((_)4 )2 =_4 +(_)4 =i4 (i4 )2 =i4 i4

2 @] +B) +0:f =05 +1a40: =10 | (1) + () =T +04 =14 L

SN 1 (U P 9y ) R P 1) S 9 P 3 S DRSPS PR (%
04 =24 =2,

O (G +@af 4B +(0uf =004 Ta | (] + @] +Baf +(00] =Ta+04 | 24
+04+1s+04 =24 +14 404 =24 _

DB O @i G f £ 0 = | O o @ # B ) <) | 3
1 +04 + 14 +04 +14 +04 =34 =14 +04 +1s+ 04 +14 =34

Table 6. Class patterns of squares from Table 2

Thus the Hoppenot equation may be broken down structurally to give the basic factors

which yield the equality of the two sides of the equation. For example, if £ represents even

integers and O represents odd integers, then symbolically for n = 3:

O +E! +0; +E;

where:

=0; +E; +0;

e when 3 does not divide O, O* =4R, +1=24Q, +1;

e when 3 divides O,0% = 4R, +1=9(4T, +1).

(5.1)

Note that when 7 is odd the leading square is always odd, but when 7 is even the leading

square is even. Consider the numerical example with n = 3:

212 +22% +23% +242

Equation (5.2) can be analysed as

=252 +26%+277.

LHS =4(R, + R, + R + R} )+2

and

RHS = 4(R! + R + R )+2

Substituting in the row functions:

LHS = 42+9n(n+1)+a> + 60, +b* + 60, )+2

withn=3,a= 22,b=

11,0, =

12, and Qn/ =

RHS = 4(2+9m(m+1)+c* + 60! )+ 2

withm =3, 0,/ =26, ¢ = 13.

Since 2,4 and 2 cancel out (in that order), on substitution of the appropriate values, we get

110+121+132+144 = 156+169+182 = 507

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)




or
3x13*=3x13° (5.8)
whereas the sum of squares yields

7Tx29=7x29 (5.9

which has no 3,13 factors. The sum-of-squares pathway is different from the structural
pathway. Interestingly, the triad {12,13,14] is not a Pythagorean triple.

6 Final comments

Modular rings can be useful in analysing essential structures and for providing new approaches
to old equations [6, 7] as in Table 7.

n fin) n fin)
2 6(R, +3R, +1,) 1 6(R, + 3R] +2r,-2)
(6r,-1) | 6nl(6r) 1) (6,-2) | 6nl6n—1f6r-2)
4, 6(R, + R, +2r, +1) 3, 6(R, +3R, +27,)
(6r, +1) 6(6r, +1)3r, +1)2r, +1) (6r,) 6r, (61, +1)67, +2)
66 6(R, +3R, +2r, +3) 5 6(R, +3R, +2r;)
(6r, +3) 6(2r, +1)3r, +2)6r, +5) (61, +2) 6(3r, +1)2r; +1)6r, +4)

Table 7. The modular ring Z . [showing that 6|(n(n+1)(n+2))]

Gratitude is expressed to an anonymous referee for taking the trouble to offer some
constructive suggestions to improve the paper.
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