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1 Introduction

Let p be the n-th prime number. By the famous prime number theorem one has pn ∼ n log n

as n → ∞. An equivalent statement is that, if π(x) denotes the number of primes ≤ x, then
π(x) ∼ x/ log x as x→∞.

Thus, as a corollary, one gets

pn+1

pn
→ 1,

log pn
log n

→ 1 as n→∞. (1.1)

An old result of Euler states that π(n)/n→ 0 as n→∞, thus as by the first relation of (1.1),(
pn+1

pn

)π(n)/n
→ 10 = 1, clearly

p
π(n)/n
n+1 =

(
pn+1

pn

)π(n)/n
· pπ(n)/nn ∼ pπ(n)/nn . (1.2)

Put an = p
π(n)/n
n . As log an =

π(n)

n
· log pn ∼

π(n)

n
· log n, by the second relation of (1.1),

so by π(n) ∼ n

log n
, log an ∼ 1, thus we have deduced the limit:

pπ(n)/nn → e as n→∞. (1.3)

In a recent note [8] we have considered the limit:

pn
n
√
p1 . . . pn

→ e as n→∞. (1.4)
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In what follows, by using certain bounds for p1 . . . pn and relations (1.2) and (1.3), we will
obtain a new proof of (1.4). Also, we will compare these bounds with certain optimal inequalities

connecting p1 . . . pn with the binomial coefficient
(
n2

n

)
.

Remarking that the left side of (1.4) could be written also as n
√
xn, where xn = pnn/p1 . . . pn,

one could ask, if the limit of xn+1/xn does exist? Since xn+1/xn =

(
pn+1

pn

)n
, the limit of this

sequence would be of interest to study. We will show that, however, this limit doesn’t exist, and
in fact, one has

lim inf
n→∞

(
pn+1

pn

)n
= 1 (1.5)

and

lim sup
n→∞

(
pn+1

pn

)n
= +∞. (1.6)

Finally, in paper [1] we have introduced the sequence (∆n(λ))n

∆n = ∆n(λ) =

(
n2

n

)
· exp(−λpn),

where λ > 0 is a fixed real number; and proved that it is not monotone increasing. We will show
here that the sequence (∆n) is an Erdös-Turán type sequence.

2 Main results

Theorem 2.1. For n ≥ 10 one has the double inequality:

e ≤ pn
n
√
p1 . . . pn

<
pn
pn+1

· pπ(n)/nn+1 . (2.1)

Proof. Letting Gn = n
√
p1 . . . pn, in [5] it is proved that for all n ≥ 10 one has Gn ≤

1

e
pn.

This implies the left side of (2.1). On the other hand, in [6] it is proved that for n ≥ 2 one has
p1 . . . pn > p

n−π(n)
n+1 . After some transformations, this implies the right side of (2.1).

Corollary 2.1. Relation (1.4) holds true.
Proof. By (1.1), (1.2) and (1.3), the right side of (2.1) has limit as e. By Theorem 2.1, the

limit (1.4) follows.
Theorem 2.2. Relations (1.5) and (1.6) hold true.

Proof. Let bn =
pn+1 − pn

log pn
, n ≥ 1. Clearly, by (1.1), bn ∼

pn+1 − pn
log n

. In 1931 E. Westzyn-

thius [10] proved a famous result:
lim sup
n→∞

bn = +∞. (2.2)

On the other hand, in 2005 (first published in 2009 [3]) D.A. Goldston, J. Pintz and C.Y.
Yildirim proved a very famous conjecture, namely that

lim inf
n→∞

bn = 0. (2.3)

For earlier, or other properties of the sequence (bn), see the monograph [4].
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Now, as one has(
pn+1

pn

)n
=

[(
1+

pn+1 − pn
pn

)pn/(pn+1−pn)
](pn+1−pn)n/pn

=
[
(1 + tn)1/tn

]qn
,

where tn → 0 by (1.1). On the other hand,

qn = (pn+1 − pn)n/pn ∼
pn+1 − pn

log n
∼ bn.

As (1 + tn)1/tn → e as n → ∞, and e+∞ = +∞, e0 = 1, relations (1.5) resp. (1.6) will
follow immediately from (2.3), resp. (2.2).

Theorem 2.3. For all n ≥ 10, one has

log pn ≥
1

n
log

(
n2

n

)
+ log log n+ 1− c1, (2.4)

where
(
n2

n

)
denotes a binomial coefficient, and c1 = 2.04287 . . .

For all n ≥ 5 one has

log pn+1 <

[
1

n
log

(
n2

n

)
+ log log n− c0

]
· 1

1− π(n)

n

, (2.5)

where c0 = 1.10298 . . .

Proof. In paper [1] the following double inequality is proved:

exp[n(c0 − log log n)] ≤

(
n2

n

)
p1 . . . pn

≤ exp[n(c1 − log log n)] (2.6)

with optimal constants

c0 =
1

5
log 23 + log log 5 = 1.10298 . . .

and

c1 =
1

192
log

(
36864

192

)
+ log log 192− 1

192
log(p1 . . . p192) = 2.04287 . . .

Now, combining the right side of (2.6) with the left side of (2.1), relation (2.4) follows.
Remarking that the right side of (2.1) holds for n ≥ 2, and combining it with the left side of

(2.6), relation (2.5) follows.
Remark 2.1. As by a result of Rosser-Schoenfeld [7] one has

π(x) < x/(log x− 3/2) for x > e3/2,

we get that
1

1− π(n)/n
<

log n− 3/2

log n− 5/2
< 3 for n > e3.

Therefore, a more transparent upper bound in (2.5) follows.
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A sequence (αn) is said to be an Erdös-Turán type sequence if, for infinitely many positive
integers k one has αk < αk+1 and for infinitely many positive integers m one has αm > αm+1.

Theorem 2.4. Let λ > 0 be a fixed real number, and define

∆n = ∆n(λ) =

(
n2

n

)
exp(−λpn).

Then (∆n) is an Erdös-Turán type sequence.
Proof. As ∆k < ∆k+1 ⇔ log ∆k < log ∆k+1, i.e.

σk :=

log

(
(k + 1)2

k + 1

)
− log

(
k2

k

)
pk+1 − pk

> λ (∗)

By the asymptotic formula (see [2], [1])

log

(
k2

k

)
=

(
k − 1

2

)
log k + k − 1

2
(1 + log 2π) +O

(
1

k

)
we get

log

(
(k + 1)2

k + 1

)
− log

(
k2

k

)
= log k + 2 +O

(
1

k

)
. (2.7)

By (1.1), (2.7) and (2.3) we get

lim sup
k→∞

σk = +∞.

This means that for any M > 0 there exist infinitely many k such that σk > M . Particularly,
for M = λ inequality (∗) holds true. Similarly, by (1.1), (2.7) and (2.2) we get

lim inf
k→∞

σk = 0,

which means that for any a > 0 there exist infinitely many m such that σm < a. Particularly, for
a = λ, the reverse of inequality (∗) holds true. This finishes the proof of Theorem 2.4.

Remark 2.2. There are very few monotone sequences connected with primes. One of them
is (pn/ log n), which is strictly increasing, see [9], p. 106.
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