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Abstract: In this work, we study the elliptic curve E : y?> = f(x), where f(z) is a cubic
permutation polynomial over some finite commutative ring R. In case I? is the finite field FF,, it
turns out that the group of rational points on FE is cyclic of order ¢ + 1. This group is a product of
cyclic groups if R = Z,, the ring of integers modulo a square-free n. In addition, we introduce
a shift-invariant elliptic curve which is an elliptic curve £ : y? = f(x), where y* — f(x) is a
weak permutation polynomial. We end our paper with a necessary and sufficient condition for the
existence of a shift-invariant elliptic curve over I, and Z,,.
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1 Introduction

Let IF, be the finite field with ¢ elements. An elliptic curve over FF,, whose characteristic is greater
than 3, is defined by an equation F : y* = 2% + ax + b, where a,b € F, and 4a® + 27b* # 0. The
point (z,y) in F, x F, on the curve £ is called a rational point. Let E(F,) denote the set of all
rational points together with a distinguished point at infinity, denoted co. There is an addition +,
which makes (E(F,), +) become an abelian group [1].

Elliptic curves over finite fields play an important role in many areas of modern cryptology.
Following the work of Lenstra, Jr. [2] on integer factorizations, many researchers have used
this idea to work out primality proving algorithms [3, 4]. Recent work on these topics can be
found in [5]. Another application is to construct the public keys. When using elliptic curves for
constructing a public key, it is sometimes necessary to find elliptic curves with a known number
of points and its group structure over a given finite field. We recall the number of rational points
and the group structure of E(F,) in the following theorem.

Theorem 1.1. [6] Let E be an elliptic curve over F,. Then:

1. |[E(F,) — (¢ +1)| <2,/q, and



2. E(F,) = Zy, ® Zy,, for some positive integers ny and ny, and ny divides gcd(ng, g — 1).

A permutation polynomial over [F, is a polynomial f whose function on F, induced by f is a
bijection. It is easy to see that every linear polynomial is a permutation polynomial. We observe
that:

Theorem 1.2. Let F, be a finite field, a € F, and n € N.

1. If f(x) is a permutation polynomial over IF, then f(x)+a and f(x+a) are also permutation

polynomials.
2. A monomial x" is a permutation polynomial over F if and only if gcd(n,q — 1) = 1.

Proof. (1) They are just vertical and horizontal translations for a permutation f(x).

(2) Clearly, f(z) = 2" is an endomorphism on Fy = F, \ {0}. Recall that F is cyclic,
say generated by a. We have thus f is a permutation polynomial < (a") = imf = FY <
ged(n,g—1) = 1. O

Permutation polynomials over finite fields and over the ring of integers modulo n have been
widely studied. There are a lot of applications in combinatorics and cryptography [7, 8] as well
as many open problems. For the extensive studies, we refer the reader to Lidl and Niederreiter’s
book [9] Chapter 7.

In the next section, we study the group structure of elliptic curves E : y* = f(x), where f(x)
is a cubic permutation polynomial. This work extends to an elliptic curve over a ring of integers
modulo 7 in Section 3. In the final section, we define a shift-invariant elliptic curve, inspired by
the property of a weak permutation polynomial, and characterize this type of elliptic curve on the
finite fields as well as the ring of integers modulo n.

2 Elliptic curves with permutation polynomials

over finite fields

Since a? = a for all a € F,, as a function, we can work only on permutation polynomials modulo
29 — z, namely polynomials of degree < q. We record a further result on degree of permutation
polynomials in:

Theorem 2.1. [9] If f(x) is a permutation polynomial over F,, then
deg(f(x)! mod (27 — 7)) < q— 2
forallt < q—2andged(t,q) = 1.

The following result characterizes permutation polynomials over finite fields of characteristic
greater than 3.
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Theorem 2.2. Let q be a power of prime p > 3 and f(x) = x° — ax + b a cubic polynomial

over IF,. Then f is a permutation polynomial if and only if gcd(3,q — 1) = 1 and a = 0.
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3 — ax. Assume

Proof. By Theorem 1.2 (1), it suffices to consider only when b = 0, i.e. f(z) =«
that a # 0.

Case 1. ¢ =1 mod 3. Then ¢ — 1 = 3n for some n € N. We have ged(n,¢) = landn < g — 2.
Also, deg(f(x)") = deg(2® —ax)"=3n=q—1>q— 2.

Case 2. ¢ = 2 mod 3. Then ¢ — 2 = 3n forsomen € N, so g+ 1 = 3(n + 1). Thus,
ged(n+1,¢9) = 1and n + 1 < ¢ — 2. Observe that

f(l')n+1 — (333 _ ax)n—&-l
= 230D _ (n 4 1)az®*! + lower terms

= —(n+ 1)az™ + lower terms mod 27 — 7.

Since 731 = 29+ = 22 mod 2¢ — x. From a # 0 and ged(n + 1,¢) = 1, we conclude that
deg(f(x)"™** mod a9 —z)=3n+1=qg—1>q—2.

Hence, both cases contradict Theorem 2.1, so f(z) = 23

—az is not a permutation polynomial
if a # 0. Thatis, f(z) = 2® is the only permutation polynomial of this form. By Theorem 1.2,
we also have ged(3,g — 1) = 1.

The converse of this theorem follows directly from Theorem 1.2 (1) and (2). This completes
our proof. ]

Finally, we count the number of points of E(F,) for the elliptic curve E : y* = f(z) = 23+,
b € IF,, where ¢ is odd greater than 3, and determine its group structure. Observe that for each
z €T, if
0, then (x,0) occurs in E(F,);
f(z) = qr? then (z,r)and (z,—r) occur in E(F,);
¢, then there is no rational point in E(F,),

where c is a non-square. Thus, in terms of , the quadratic character of I, we obtain

[BE) =1+ (1+x(f(2)=1+a+ ) x(f@)):

z€Fy z€F,

Since f(z) is a permutation polynomial, }° x X(f(z)) = > ,cp, X(x) = 0. This implies
B(F,) = q+1.

From Theorem 1.1 (2), we know that E(F,) = Z,, x Z,, for some positive integers n; and
ng, and ny divides ged(ng, ¢ — 1). Since n, divides |E(F,)| = ¢ + 1, ny = 1 or 2. Assume that
ny = 2. Then E(F,) & Zy X Z,, which contains 3 points of order two. Since f(z) = 2* + b has
only one root in Fy, say a, (a,0) is the unique double point in E(F,). This contradiction gives
ny = 1. Hence, E(F,) = Z,,. Therefore, we have shown:

Theorem 2.3. Let E : y* = x* + b be an elliptic curve with permutation polynomial over F,,.
Then E(F,) is a cyclic group of order ¢ + 1, i.e., E(F,) = Zg1.



3 Elliptic curves with permutation polynomials

over the ring of integers modulo »

To extend the study, we consider elliptic curves with permutation polynomials over the rings of
integers modulo n, where n is not prime. We start with the necessary and sufficient conditions to
determine a cubic permutation polynomial over the ring Z,,.

Theorem 3.1. [10] For any n = Hle pi", f(x) is a permutation polynomials over the rings of
integers modulo n if and only if f(x) is also a permutation polynomials over the rings of integers

modulo p;' for all i.
Therefore, it suffices to consider only a permutation polynomials over the rings Z,-.

Theorem 3.2. [10] If f(x) = az® — bz + ¢ is a permutation polynomial over Z,-, where p > 3
is a prime, thenr =1,p=2 mod 3,b=0and a € Z,.

Corollary 3.3. Ifthere is an elliptic curve with a permutation polynomial over a ring of integers
modulo n, then n is an odd composite square-free integer whose prime divisor is congruent to 2

modulo 3.

We then work only the case of an elliptic curve with permutation polynomial over a ring Z,,.
Letn = Hle pi, Where p; < p; 11 are odd primes which are congruent to 2 modulo 3 and let F :
y? = 23+b be an elliptic curve with permutation polynomial over Z,,. To define a group operation
on E(Z,), we apply the projections 7; : P = (z,y) mod n — P,, = (z,y) mod p;. Using the
Chinese remainder theorem, we know that 7 = (7, ..., m) : E(Z,) — E(Z,,) X -+ X E(Zy,)
is a bijection. Thus, an addition + for F(Z,,) can be defined by using the addition on £(Z,,) and
the map 7. The following theorem interprets the group structure of (E(Z,,), +).

The next corollary gives the group structure of an elliptic curve with permutation polynomial

over Z,. Its proof is evident from the above observation.

Corollary 34. Let n = Hle pi, where p; < p;11 are odd primes which are congruent to 2
modulo 3 and E : y*> = x® + b be an elliptic curve with permutation polynomial over Z,,. Then

E(Zn) = Lpyya X -+ X Lp, 41.

4 Permutation polynomials in two variables

and shift-invariant elliptic curves

In this section, we study permutation polynomials in two variables over a finite ring. Let f(z, y)
be a polynomial in two variables with coefficients in a finite ring R. We say that f is a weak
permutation polynomial if for every r in R, the inverse image of r under f is of cardinality |R)|.
We begin with a simple form of weak permutation polynomials over a finite field.



Theorem 4.1. Let R be a finite ring. Let g(y) and f(x) be polynomials in R|x,y]. Then a
polynomial in two variables g(y) — f(x) is a weak permutation polynomial if f(x) or g(y) is a

permutation polynomial over R.

Proof. First, notice that for any permutation polynomial p(z), the map ¢ : {(z,y) € R x R |
g(y) = p(x)} — R defined by ¢(x,y) = y is a bijection. This makes |{(z,y) € R X R | g(y) =
pa)}] = |,

Without loss of generality, suppose f(z) is a permutation polynomial. To show that g(y) —
f(z) is weak, we determine the cardinality of {(z,y) € R x R | g(y) — f(xz) = r} for an
arbitrary r in R. Since f(z) + r is also a permutation polynomial, we have [{(z,y) € R X R |
9(y) — flx) =r} ={(z,y) e Rx R | g(y) = f(z) +r}| = [R] forall 7 € R. O

Corollary 4.2.  [. If E : y* = f(x) is an elliptic curve with permutation polynomial over F,,

then y* — f(z) is a weak permutation polynomial in F [z, y].

2. If E : y*> = f(x) is an elliptic curve with permutation polynomial over Z,, then y* — f(z)

is a weak permutation polynomial in F [z, y].

For any elliptic curve E : y*> = f(z) and o € F,, we let E, denote the a-shifted elliptic
curve, y* = f(x) + a. The previous corollary shows an interesting property of elliptic curves
with permutation polynomials. Together with Theorem 2.3, we can see that E(F,) = E,(F,) for
every « in [Fy, this leads us to define a shift-invariant elliptic curve as an elliptic curve I whose
numbers of its rational points do not change when it is shifted by any constant in F,. Also, we
may define a shift-invariant elliptic curve on Z,, in the same way.

Theorem 4.3. An elliptic curve E over a finite field ¥, whose characteristic is greater than 3 is

a shift-invariant elliptic curve if and only if it is an elliptic curve with permutation polynomial.

Proof. Let E : y*> = f(z) be a shift-invariant elliptic curve. Then for any « in FF,, the cardinality
of the set of rational points of £, must be the same constant K. For each v € f(F,), the image
of Fy under f, letn, = |f~!(y)|. Note that 3 __ . 1, = |Fy| = ¢.

Assume that 0 ¢ f(IF,). Then for any v € f(F,), x(v) = 1 or —1. Thus,

K= ) (14+x())=2 > n,

vef(Fq) vEf(Fq)
x(v)=1

must be even. In each a € f(F,), 0 € f_,(F,), the image set of f(z) — «. We then consider
rational points of E_,, to obtain

K= Y (+xt= Y @+x)+ Y @+x(0)

vE€f—a(Fq) vEf—a(Fq) YEf-a(Fq)
x(7)=0 x(7)=1
=Ny + 2 Z Ny
’yGf,a(Fq)
x(7)=1



which forces n,, be even for any arbitrary o in f(IF,,). This is contrary to the fact that | vef ) Ty =
q is odd. Hence, 0 € f(F,).

Finally, suppose f is not onto and let 5 ¢ f(F,). Counting rational points of E_z gives
0¢ fp(Fy). Thus, K = 23 s ,,) ny and when we count rational points of E_,, we still

x()=1
get K = ng + 2) ,cr (v, Ny forevery ain f(IF,). A contradiction occurs in the same way
x(7)=1
because 276 FE) My =4 1s odd. The opposite direction is clear. ]

Next, we study a shift-invariant elliptic curve F : y? = f(z) on the ring of integers modulo 7.
For any r € Z,, the cardinality of the set of rational points of £, must equal the same constant
K. Let Ng(r) = |f~'(r)| and let s(r) be the number of roots of the equation y* = r in Z,. We
have

K= Y s(r)Nyr)= Y s(r+a) Ny(r+a)
r€f(Zn) (r+a)€fa(Zn)

when F is shifted by a constant a € Z,,. Moreover,

Yost) =Y HyeZ:y=r}= Uy eZu: v’ =r} =1Zu| =n.

rELn rE€Ln rE€Ln

Note that for all 7 € Zj,, Nyyo(r +a) = Ng(r)and 3 ;5 Ni(r) = U, ez, )| =12, =
n.

To answer the next question “Is there any shift-invariant elliptic curve in the ring of integer
modulo n?”. By the Chinese remainder theorem, it suffices to work only with the case n is a
prime power. The following theorem gives us the number of square roots of an element in this
type of ring.

Theorem 4.4 (Guass, D.A., art.104 [11]). Let p be an odd prime, n a positive integer, a a residue
modulo p" and s(a) denote the number of square roots of a. Then one of the following statements
holds:

(i) if p does not divide a, then s(a) = 2,
(ii) if p divides a but p" does not divide a, then write a = p*m where p  m,
— if k is odd, then s(a) = 0,
— if k = 2u is even, then s(a) = 2p", or
(iii) if p" divides a, then s(a) = p™ 1"

The technique used in the proof Theorem 4.3 can be extended to prove the next theorem which
describes a shift-invariant elliptic curve over the ring of integers modulo n.

Theorem 4.5. Let n = Hle p;"* where p; > 3 for all i. Then an elliptic curve E over a ring
of integers modulo n is a shift-invariant elliptic curve if and only if it is an elliptic curve with

permutation polynomial.



Proof. In Z,,»:, we know from the previous theorem that 0 is the only residue whose number of
square roots is odd. Thus the equation

gQ:(y%ﬂy;ayk) (al,ag,... ak)

in HZ N/ = Z, has odd roots only when a; = 0 for all .. Suppose on the contrary that
(0,0,..., ) f(I1, Zp). Then

K= 3 s Ny

e (Ti=1 Zp,mi)

is even. Shifting with —§ gives

Ny(5) = Ny_o(0) = K — Z s(7) - Ny_o(7)

Fef— ([T Zpmi)
7£(0,0,...,0)

which turns out to be even for all § € Hle pni- On the other hand, > o ) Ny(5) =
P v

Hlepi"i = n is odd. Hence, (0,0,...,0) is in the image of f. Again, f must be onto unless
(0,0,...,0) & f ATIr, Zpni) for some £ € ][5, Z,,» which leads to a contradiction in the
same way. This completes the proof. O]

Together with Corollary 3.3, we may conclude from Theorem 4.5 that:

Corollary 4.6. If there is a shift-invariant elliptic curve over a ring of integers modulo n, then n
is an odd composite square-free integer whose prime divisor is congruent to 2 modulo 3.
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