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Abstract. According to the number of sub-SL(8)s (sub-STS(7)s), there are five classes of sloops 
SL(16)s (STS(15)s) [2, 5].) In [4] the author has classified SL(20)s into 11 classes. Using 
computer technique in [10] the authors gave a large number for each class of SL(20)s. There are 
only simple SL(22)s and simple SL(26)s. So the next admissible cardinality is 28. Also, all 
SL(32)s are classified into 14 classes in [3]. We try to generalize the classification of SL(20)s 
given in [4] for SL(2n)s for each possible n and applying this method for n = 14 to classify all 
possible classes of SL(28)s. Consequently, we can establish all classes of nonsimple SL(28)s and 
all classes of semi-planar SL(28)s (STS(27)s).  In this article, we show in section 3 that there are 
nine classes of SL(28)s (STS(27)s having one sub-SL(14) (sub-STS(13)) and r sub-SL(8)s (sub-
STS(7)s) for r = 0, 1, 2, 3, 4, 5, 8, 11 or 16. All these sloops are subdirectly irreducible having 
exactly one proper homomorphic image isomorphic to SL(2). In section 4, we construct all 
classes of semi-planar SL(28)s. Such SL(28)s (STS(27)s) have r sub-SL(8)s (sub-STS(7)s) for 
r  =1, 2, 3, 4, 5, 8, 11, 16 but no sub-SL(14) (sub-STS(13)).  

In [4] is determined a necessary and sufficient condition for a sub-SL(2) = {1, x} of an 
SL(2n) to be normal. This result supplies us with the following two facts. First, there is another 
nonsimple subdirectly irreducible SL(2n) having exactly one proper homomorphic image 
isomorphic to an SL(n). Accordingly, we can construct all classes of nonsimple subdirectly 
irreducible SL(28)s.  Second fact is that if an SL(2n) has a simple sub-SL(n) and (n- 1)(n - 2)/6 
sub-SL(8)s  passing through a non-unit element, then SL(2n) is isomorphic to the direct product 
SL(n)   SL(2). According to the result of section 3 and the above two facts, we may say that 
there are 8 simple classes of SL(28)s and only 11 classes of nonsimple SL(28)s, all these classes 
have no sub-SL(10)s. In the last section, we construct an example for each class given above of 
nonmsimple and simple (semi-planar) SL(28)s (STS(27)s). Finally, we review the classes of 
SL(2n)s (STS(2n -1)s) in 3 tables for 2n = 16, 20, and 28. 
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1 Introduction 
 
A Steiner loop (briefly sloop) is a groupoid S = (S;  , 1 ) with neutral element 1 satisfying the 
identities:  

x  x =  1 ,  x  y = y  x ,  x  ( x  y ) = y . 

So, sloops are quasigroups [7, 12]. 
We use the abbreviations SL(n) for a sloop  of cardinality n. A sloop is called Boolean if 

it satisfies the associative law (x  y)   z   = x  (y  z), i.e., if the sloop is a Boolean group.  

A Steiner triple system is a pair (P; B), where P is a set of points and B is a set of 
3-element subsets of  P called blocks such that for distinct points  p1,  p2   P, there is a unique 
block b  B with {p1, p2}  b. If the cardinality of the set of points P is equal to m, the Steiner 
triple system (P; B) will be denoted by STS(m). It is well known that the necessary and sufficient 
condition for the existence of an STS(m) is  m   1 or 3 (mod 6 ) [11]. There is a one to one 
correspondence between sloops and Steiner triple systems given by the relation: 

x  y =  z  {x, y, z} is a block [7, 11, 12]. 

Quackenbush [12] proved that the congruences of sloops are permutable, regular, and 
Lagrangian. A subsloop S of a sloop L is called normal iff (x  y)  S = x  (y  S) for all x, y  L. 
Also in [12] Quackenbush proved that if S is a subsloop of L and L = 2 S, then S is normal.  

Distinct three points x, y, z form a triangle if {x, y, z} does not form a block (or 
equivalently, if {x, y, z} does not contain the identity element and x  y   z). An STS is planar if 
it is generated by every triangle. A planar STS(m) exists for each m  7 and m  1 or 3 (mod 6) 
[6]. The sloop  associated with a planar triple system is also called planar. Quackenbush [12] 
showed that the only nonsimple finite planar sloop  has 8 elements.  

A semi-planar sloop is a simple sloop each of whose triangles generates either the whole 
sloop or a sub-SL(8). The STS associated with a semi-planar sloop is called a semi-planar STS 
or more precisely a semi-planar STS with sub-STS(7)s. The author [1] gave a construction of 
semi-planar sloops SL(2n) for n > 3.    

More about sloops can be found in [7, 12]. We will use in this article some basic concepts 
of universal algebra [8] and of graph theory [9]. 
  There is a well-known classification of all SL(16)s into five classes  based on the number 
of sub-SL(8)s [2]. All SL(16)s having no sub-SL(8)s are simple and all simple SL(16)s are 
planar. Except the Boolean SL(16) and the class of simple SL(16)s there are exactly three 
classes of nonsimple subdirectly irreducible SL(16)s [2]. All SL(22)s, and all SL(26)s are 
simple. In [4] the author has classified SL(20)s into 5 simple classes and 6 nonsimple classes. 
The next admissible orders for sloops is of cardinality 28. According to the algebraic and 

53 



combinatory properties of each class of SL(28)s, we exhibit all classes of SL(28)s having no 
sub-SL(10). We describe how can one construct an example of each class of SL(28)s. 

In sections 3 and 4, based on the cardinality and the number of the (normal) subsloops, 
we will exhibit all possible classes SL(28)s (all classes of SL(28)s having no sub-SL(10)). Note 
that a sub-SL(n) is always normal in an SL(2n) [12]. Similarly, as for n = 10 in [4] and for 
n = 14, we can generalize this classification, if we begin with a planar SL(n) = L1 having a 
1-factorization F(L1) on L1 satisfying that the sub-1-factorizations of F(L1) exist only on the 
sub-SL(4)s of L1. Then we may construct all possible classes of nonsimple subdirectly 
irreducible SL(2n) for each possible n. 

We review the results of this article in the following: 
 
1. In section 3, there are 10 classes of nonsimple SL(28)s having exactly one sub-SL(14) 

and r sub-SL(8)s for r = 0, 1, 2, 3, 4, 5, 8, 11, 16, 26. For n = 14 and r = 26, the doubling 
constructed SL(2n) = 2L1 with the planar sub-SL(n) = L1 is isomorphic to the direct 
product  SL(n)  SL(2).  All SL(28)s except for r = 26 are nonsimple subdirectly 
irreducible. In general, if the number r of sub-SL(8)s = (n - 1)(n - 2)/6 for n  10, then the 
doubling constructed SL(2n) = 2L1 with the planar sub-SL(n) = L1 is isomorphic to 
the direct product  L1  SL(2). The number r depends on n, so the values of r are 
determined individually for each value of n.  

2. Due to Doyen [6], there are planar STS(n - 1)s for each possible n  10. The associated 
planar SL(n)s are simple for each possible n  10 [12]. Indeed, planar SL(n)s  have no 
nontrivial subsloops.  

In section 4, we will show that there are eight classes of semi-planar SL(28)s with r sub-
SL(8)s with r = 1, 2, 3, 4, 5, 8, 11, 16. All of these semi-planar SL(28)s are simple but not 
planar. In addition, the associated STS(27)s are semi-planar (each triangle generates a 
sub-STS(7) or the whole STS(27)).  

3. According to the construction given in section 4, there is a class of SL(2n)s having 
(n - 1)(n - 2)/6  sub-SL(8)s and no sub-SL(n). Theorem 6 tells us that these sloops are 
subdirectly irreducible other than the constructed SL(2n) = 2L1 given in section 3 and 
they have exactly one proper homomorphic image isomorphic to SL(n) (not Boolean)), 
for each possible number n  10. So, we may say that all classes of nonsimple subdirectly 
irreducible SL(28)s are determined. 

4. In section 5 and 6, we describe how can one construct an example for each class of 
SL(28). Also we review all classes of the cardinalities 16 and 20, and all classes of 
cardinality 28 having no sub-SL(10)s in three tables. 
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2 Construction of an SL(2n) = 2L1 
 
Using the doubling construction SL(2n)s [11], we will exhibit in this section some properties of 
subsloops of SL(2n)s .  

Let T1 = (P*
1; B1) be an STS(n-1) and its corresponding sloop L1 = (P1;  , e), where 

P*
1 = {a1, ... , an-1} and P1 = P*

1  {e}. Consider the set of 1-factors defined by  Fi = {e ai }  
{al ak : al . ak = ai  and ai, al, ak  P1}, then the class F = {F1, F2, ... , Fn-1} forms a 
1-factorization of the complete graph Kn on the set of vertices P1. The 1-factorization F will be 
denoted by F(L1). 

By taking the set P2 = {b, b1, b2, ... , bn-1} with P1  P2 =  and 

G

tively.  

(2).  

i = {b bi }  {bl bk : al  ak = ai for i { l, k}}, 

then the class of 1-factors G = {G1, G2, ... , Gn-1} forms a 1-factorization of the complete graph 
Kn on the set of vertices P2 and it will be denoted by G(P2). We consider the doubling 
construction of triple systems [11] as follows: STS(2n -1) = (P*; B), where P*

 = P*
1  P2 and 

the set of triples B = B1  B12, where B12 = {{ai, bj, bk} :  bj bk  G(i )}, for any permutation  
on the set N = {1, ... , n - 1}. The constructed STS(2n -1) = (P*; B)  and the associated sloop 
SL(2n) = (P;  , e) will be denoted by 2T1 and 2L1, respec

We consider the following notation in the whole article, the STS(n -1) = (N; X), where X 
is defined by: {i, j, k}  X  if and only if {ai, aj, ak} B1; i.e. (N; X) is an STS(n - 1) isomorphic 
to (P*

1; B1).  

We observe that L1 is a normal subsloop of  2L1 for any permutation . If we choose 
 = the identity, then the constructed sloop L = 2L1 is isomorphic to the direct product of 
SL(n) = L1 and the 2-element sloop SL

The following lemma clarifies the relation between the subsloops of the constructed sloop 
2L1 and the normal subsloop L1. 

 

Lemma 1 [4]. Let  L = (P = P1  P2;  , e)  be a  sloop of cardinality 2n  with the subsloop L1 = 
(P1;  , e) of cardinality n. Then any subsloop S of L with S – P1   satisfies S  P1 = (1/2) 
S. 
 

Accordingly, if L1 is a planar sloop, then S  P1 = (1/2) S = 1, 2 or 4. Also, the 
subsloops of the constructed SL(2n) = 2L1 satisfies the above lemma. This means that if L1 is 
a planar sloop, then the constructed SL(2n) = 2L1 has only subsloops of cardinality 2, 4, or 8. 
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In this article, we consider a planar sloop L1. So the only possible nontrivial  subsloops 
other than L1 of 2L1 are of cardinality 8. Accordingly, we need only identify all sub-1-
factorizations of K4 of the associated 1-factorization F(L1) and also of G(P2) to determine all 
sub-SL(8)s of  2L1.  

For each block {ai, aj, ak} B1, there is a sub-1-factorization f = {fi = {e ai, aj ak}, fj = 
{e aj, ai ak}, fk = {e ak, ai aj}} of F(L1). Conversely, if there is a sub-1-factorization of F(L1) 
on the 4-element subset {e, ai, aj, ak}, then {ai, aj, ak} is a block in B1. This means that there is 
a one-one correspondence between the set of blocks of B1 and the sub-1-factorizations of K4  in 
F(L1).  
The next result is valid for n = 10 as in [4], we generalize it as follows:  

ment subsets of the sub-1-factorizations of K4 are exactly the sub-SL(4)s = 
e, ai, aj, ak} of L1.  

ays a sub-1-factorization in the associated 1-factorization F(L1) on 

}  Fk forms a sub-SL(8) of the planar sloop L1 on the set {e, ai, aj, ak, x, y, z, w}, 

l prove that the set of factors 

as proved that the sub-1-factorizations in F(L1) occurs only on the 

ns F(L1) has exactly 12 sub-1-

e case when {e, ai, 

Otherwise, assume e {x, y, z, w}, and {x y, z w}  Fi, {x z, y w}  Fj , and {x w, y z}  Fa form 

 
Lemma 2.  Let T1 = (P*

1; B1) be a planar STS(n-1) and L1 = (P1;  · , e) be the corresponding 
planar sloop for n > 8. If the associated 1-factorization F(L1) for a planar L1 has sub-1-
factorizations of K4 only on the 4-element sub-SL(4)s, then the associated 1-factorization F(L1) 
has exactly (n-1)(n-2)/6 (the number of blocks of B1) sub-1-factorizations of K4. Especially, for n 
= 10 or 14, the 4-ele
{
 
Proof. Clearly, there is alw
each 4-element sub-SL(4).  
Let {e, ai, aj, ak} be a subsloop of L1, then the sub-1- factors fi = {e ai, aj ak  Fi, fj = {e aj, ai 
ak}  Fj and fk = {e ak, ai aj}  Fk form a sub-1-factorization of F(L1). Since L1 is planar, we 
can say that there is no another sub-1-factorization in the set of factors {Fi, Fj, Fk}. Otherwise, 
the sub-1-factors fi

` = {e ai, aj ak, x y, z w}  Fi, fj
` = {e aj, ai ak, x z, y w}  Fj and fk

` = {e ak, 
ai aj, x w, y z
which is impossible. 
Assume that {e, ai, aj, a} does not form a sub-SL(4) of L1, we wil
{Fi, Fj, Fa} has no sub-1- factorizations on the subset {e, ai, aj, a}. 
For n = 10: The author [4] h
4-element sub-SL(4)s of L1. 
Since the number of blocks of B1 is 12, the 1-factorizatio
facorizations of K4. Each of them is defined on a sub-SL(4).   
For n = 14: The order r of the complete graph Kr for a sub-1-factorization of F(L1) is equal to 4 
or 6. Indeed, a sub-1-factorization of K6 does not form a subsloop of L1. Consequently, we are 
focusing only with the sub-1-factorizations of K4. We need only consider th
aj, a} does not form a subsloop of L1; hence we may assume  ai · aj = ak ≠ a.  
If there is a sub-1-factorization on a 4-element subset {x, y, z, w}, then e {x, y, z, w}. 
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a sub-1-factorization of K4. But we know that e ai  Fi, e aj  Fj and e ak  Fk, then {e, ai, aj, 
a}  {x, y, z, w} = . Without loss of generality, we may choose the following set of 1-factors: 

  

SL(4)s.     

d  
. 

 X. 

Fi = {e ai, aj ak, x y, z w, a b, c d, f g}, Fj = {e aj, ai ak, x z, y w, a c, b g, d f}, 
Fa = {e a, ai b, aj c, x w, y z, ak f, d g}, and Fk = {e ak, ai aj, a f, x b, y c, z d, w g}. We note that 
the points x, y, z, w must lie in four different edges in the 1-factor Fk.  This means that Fx = {e x, 
ai y, aj z, a w, ak b, c f,  d g}, which contradicts the fact that Fx  Fa = . Notice that any other 
choice leads to the same contradiction. This means that the set of factors {Fi, Fj, Fa} has only 
sub-1- factorization of K4, if {e, ai, aj, a} forms a sub-SL(4).  
Since the number of blocks of B1 in STS(13) is 26, the 1-factorizations F(L1) has exactly 26 
sub-1-facorizations of K4, each of them is defined on a sub-SL(4).  

In general, for n ≥ 16,  if the associated 1-factorization F(L1) for a planar L1 has sub-1-
factorizations only on the 4-element sub-SL(4)s = {e, x, y, z},  then the associated 1-factorization 
F(L1) has exactly (n-1)(n-2)/6 sub-1-factorizations of K4. This completes the proof. � 

 

In general, the associated 1-factorization F(L1) may has a sub-1-factorization on a 4-
element subset {x, y, z, w} of P1 with e {x, y, z, w}, even if the SL(n) is planar. For example 
for n = 16, there are planar and not planar SL(16)s [4]. Also, there is a planar SL(16) = L1 in 
which the associated 1-factorization F(L1) has a sub-1-factorization on a 4-element subset 
satisfying e  {x, y, z, w}. Moreover, there is a planar SL(16) = L1 in which the associated 1-
factorization F(L1) has only sub-1-factorizations on the 4-element sub-SL(4)s. So we restrict our 
discussion in this article for planar SL(n) = L1 in which the associated 1-factorization F(L1) has 
only sub-1-factorizations on the 4-element sub-

Also, we note that the 1-factorization G(P2) has only sub-1-factorizations of K4 on the 4-
element subset {b, bi, bj, bk} of P2, if and only if {e, ai, aj, ak} is a sub-SL(4) of L1. Moreover, 
the sub-1-facorizations of K4 in both F(L1)  and G(P2) are determined by: 
 
f = {fi = {e ai, aj ak}, fj = {e aj, ai ak}, fk = {e ak, ai aj}} an
g ={gi = {b bi, bj bk}, gj = {b bj, bi bk}, gk = {b bk, bi bj}} for all {i, j, k}  X
 
Accordingly, we may easily verify the following lemma. 

Lemma 3 [4]. Let C1 ={e, ai, aj, ak} and C2 = {b, b(i), b(j), b(k)} be  4-element subsets of P1 
and P2 , respectively. Then 2C1 = (C1  C2;  , e) is a sub-SL(8) of the construction 2L1 if 
and only if {i, j, k} and  {(i), (j), (k)} are lines in
 

Accordingly, we may say that the only possible nontrivial subsloops of 2L1 are L1 
(exactly one sub-SL(n)) and r  sub-SL(8)s, the values of r depends also on n and satisfies 0  r  

57 



(n -1) (n -2)/6. Each of sub-SL(8) intersects L1 in a sub-SL(4). This implies that any proper 
subsloop S of 2L1 with  S > 4 and S  L1 is determined by the 8-element subset S = {e, ai, 
aj, ak, b, b(i), b(j), b(k)} such that {i, j, k} and {(i), (j), (k)}  X. 
 
 
3 Subdirectly irreducible sloops of cardinality 2n  
 
Any sloop of cardinality 2n with a planar sub-SL(n) has no more subsloops of cardinality n and 
has at most (n-1)(n-2)/6 subsloops of cardinality 8. In particular, the direct product of a planar 
sloop SL(n) and the SL(2) has exactly one sub-SL(n) and (n-1)(n-2)/6 sub-SL(8)s. On the other 
hand, planar SL(2n)s have no nontrivial subsloops. 

A nonsimple subdirectly irreducible SL(2n) has exactly one normal subsloop  SL(n) or 
SL(2). In the next theorem we exhibit all nonsimple subdirectly irreducible SL(2n)s having a 
planar sub-SL(n) for each possible n. Note that we restrict our discussion in this article for planar 
SL(n) = L1 in which the associated 1-factorization F(L1) has only sub-1-factorizations on the 4-
element sub- SL(4)s.  
 
Theorem 4. The constructed sloop 2L1 = (P = P1  P2;  , e) with a planar subsloop SL(n) =  
L1 is isomorphic to the direct product of the subsloop L1 and the 2-element sloop SL(2), if and 
only if  2  L1  has (n-1)(n-2)/6 sub-SL(8)s, otherwise 2L1 is nonsimple subdirectly 
irreducible. Moreover, the constructed sloop 2L1 has exactly r subsloops of cardinality 8 if 
and only if the permutation α transfers r lines into r lines of X for certain numbers r depending 
on n and satisfying 0 ≤ r ≤ (n-1)(n-2)/6, where (N, X)  (P1

*, B1 ) and N = {1, 2, … , n - 1}. 
 
Proof.  Let 2L1 have (n-1)(n-2)/6 sub-SL(8)s, this means that 2L1 has maximal numbers 
of sub-SL(8)s. According to Lemmas 1, 2 and 3, the image of each line in X is again a line in X, 
then α (X)  {{α(i), α(j), α(k)} : for all {i, j, k}  X} = X. Consider the map  from 2L1 to the 

direct product  L1  {0, 1} by (e) = (1, 0) , (b) = (1, 1), (ai) = (ai, 0) and (bi) = (aα-1(i), 1). It 
is a routine matter to proof that  is an isomorphism. Notice that (ai bj) = (bk) if bj bk  G(i ). 

This means that {(i), j, k} is a block in X. Also, (bk) = (aα-1(k), 1) and (ai) (bj) = (ai, 0) (aα-

1(j), 1) = (ai aα-1(j), 1), but -1{(i), j, k} = {i, -1(j), -1(k)} is also a blook in X, so (ai) (bj) = 
(bk).  
The sloop 2L1 has a normal sub-SL(n) = L1; another possible normal subsloop is the 2-
element subsloop C2. In this case C2 must satisfy that C2  L1 = {e}; this means that the sloop 
2L1 is isomorphic to the direct product SL(n)  SL(2) and has exactly (n-1)(n-2)/6)) sub-
SL(8)s. Therefore, if 2  L1 has r sub-SL(8)s with r < (n-1)(n-2)/6, then the congruence lattice 

58 



of 2  L1 has only one normal subsloop that is L1. Therefore, 2L1 is subdirecly irreducible 
for all possible r < (n-1)(n-2)/6.  
Let α transfer the line {i, j, k}  X into the line {α(i), α(j), α(k)}  X. According to Lemmas 3, 
we may directly say that S = {e, ai, aj, ak, b, b(i), b(j), b(k)}  forms a subsloop. Since α is a 
permutation on the set of points N = {1, 2, … , n - 1} of the system (N, X), it follows that the 
possible values of the number of lines r of X transferred into lines satisfy 0 ≤ r ≤ (n-1)(n-2)/6.  
This completes the proof. � 

The classification of SL(2n)s depends on the number of sub-SL(8)s r and the possible 
values of r depends also on n. For this reason, we discuss the following result only for n = 14. 
For n = 10, X  is the set of lines of the affine plane over GF(3), then the possible values of r  are 
0, 1, 2, 3, 4, 6 or 12 [4]. As we will see in section 5 that the possible values of r  are 0, 1, 2, 3, 4, 
5, 8, 11, 16 or 26 for n = 14.  

Moreover, there is another class of subdirectly irreducible SL(2n)s having exactly one 
proper normal sub-SL(2). It will be described as in the following theorem.   

For each non-unit element x of a sloop the 2-element set {e, x} forms always a subsloop, 
the next theorem supplies us with a necessary and sufficient condition for the sub-SL(2) = {e, x} 
to be normal for a finite sloop. This helps us to determine the other classes of subdirectly 
irreducible SL(2n)s.   
  
Theorem 5 [4]. Let  L be a sloop of cardinality 2 n. A subsloop S = {e, x} is normal if and only 
if L contains (n - 1)(2n - 4)/12 sub-SL(8)s including the element x.                                                                     
 

According to Theorem 4, if an SL(2n) with a planar sub-SL(n) has (n- 1)(n - 2)/6 sub-
SL(8)s, then SL(2n)  SL(n)  SL(2), which implies that SL(2n) has a normal sub-SL(2) = {e, 
x}. Hence the factor sloop of SL(2n) by the normal sub-SL(2) is isomorphic to SL(n). Each sub-
SL(4) of the factor SL(n) forms a sub-SL(8) of SL(2n) passing through x. This means that if an 
SL(2n) has (n- 1)(n - 2)/6 sub-SL(8)s, then each sub-SL(8) passes through the sub-SL(2) = {e, 
x}. In addition, if the SL(2n) has no sub-SL(n), then SL(2n) is subdirectly irreducible other than 
the subdirectly irreducible SL(2n) = 2  L1 given by Theorem 4. Consequently, we may say 
that all nonsimple subdirectly irreducible SL(28)s are determined.  

In particular, Theorem 4 and 5 show that if the constructed SL(2n) = 2L1 has a simple 
planar sub-SL(n) = L1 and (n - 1)(n - 2)/6  sub-SL(8)s, then each sub-SL(8) passes through a 
normal sub-SL(2) = {e, x}. According to Lemma 1 and the definition of the constructed 2L1, 
then x = b, hence the subsloops L1 and {e, b} are normal in 2L1. Therefore, 2L1 is 
isomorphic to the direct product L1  {e, b}.  
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4 Semi-planar sloops of cardinality 2n  
 
We restrict our discussion in this section for SL(2n) for n = 14. A semi-planar sloop is a simple 
sloop each of whose triangles generates either the whole sloop or a sub-SL(8) " cf. [1]". The 
STSs associated with the semi-planar sloops will also be called semi-planar (or more precisely 
semi-planar with sub-STS(7)s). We note that all simple SL(16)s are planar; i.e. there is no semi-
planar SL(16), which is not planar.  

For n > 16, we discuss the classes of semi-planar SL(2n)s, individually. According to the 
value of n we determine the values of r (the number of sub-SL(8)s). For n = 10, we determined 
all classes of semi-planar SL(20) in [4].  Based on the number r of sub-SL(8)s of SL(28), we 
will determine all possible classes of semi-planar SL(28)s. So we will see that there are eight 
distinct classes of semi-planar SL(28)s.   

In the following we will modify the above construction of the subdirectly irreducible 
SL(2n) = 2L1 = (P = P1  P2;  , e)  to get a construction of a semi-planar sloop denoted by  
2L1.  

Consider a constructed subdirectly irreducible SL(2n) = 2L1 having a sub-SL(8), then 
the set of elements of sub-SL(8) can be considered  A = {e, ai, aj, ak, b, b(i), b(j), b(k)}. Also 
consider the STS(2n - 1) associated with the constructed subdirectly irreducible SL(2n) = 
2L1,; i.e., the associated STS(2n - 1) has a sub-STS(7) on the subset A* = {ai, aj, ak, b, b(i), 
b(j), b(k)}, where. {i, j, k} and {α(i), α(j), α(k)} are lines in X. 
 By interchanging the following set of blocks. :  

H  

R  

 = {{ai, aj,  ak}, {ai, b(j), b(k) }, {aj, b(i), b(k)}, {ak, b(i), b(j)}}

with the set of triples 

 = {{ b(i), b(j), b(k) }, { b(i), aj, ak}, { b(j), ai, ak}, { b(k), ai, aj}},

we get again an STS(2n - 1) = (P* = P*
1  P2; B- H  R). The constructed STS(2n - 1) and the 

associated SL(2n) will be denoted by 2T1 and 2L1, respectively, where 2L1 = 
(P = P1  P2;  , e). Notice that the difference between the binary operations “  “ and  “   “ is 
only restricted on the subset of elements of A*; i. e., x  y = x  y for all  x, y P - A*.  

In the next lemma we will show that the new construction 2L1 is a semi-planar sloop 
such that α transfers at least one line into a line and at most ((n-1)(n-2)/6) - (n-4) lines into ((n-
1)(n-2)/6) - (n-4) lines of the STS(n - 1) = (N; X) for both n = 10 and 14. This result is proved for 
n = 10 in [4], in the following theorem we prove similar result for n = 14.  
 
Theorem 6. Let L1 be a sloop of cardinality 14. The constructed sloop 2L1 = (P = P1  P2; 
  , e) has no sub-SL(n`)s for each possible n` satisfying 8  n` ≤ n = 14 . Also, 2L1 is a semi-
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planar sloop having r  sub-SL(8)s for each possible r, where r is the number of lines of the triple 
system (N; X ) transferred into r lines satisfying 1   r  ((n-1)(n-2)/6)- (n-4).  
 
Proof. We use some times the letter n instead 14 to point out that this proof is valid for other 
values of n for example for n = 10 as in [4]. Let S = {x, y, z} be a triangle in 2L1 . At first, we 
want to prove that the subsloop <S> generated by S in 2L1 is equal to the whole sloop 2L1 
or a sub-SL(8). 
Assume that <S>  A  2, where A = {e, ai, aj, ak, b, b(i), b(j), b(k)}, then the subsloop <S> 
in the sloop 2L1 is the same subsloop <S> in 2L1.  The unique sub-SL(n) in 2L1 is L1, 
hence if the subsloop <S> is a sub-SL(n), then <S> = <S> = L1 contradicting the fact that  
ai  aj = b(k)  in 2L1.  
Also, if  <S>  A = {e, b, ai, b(i),}, {e, b, aj, b(j)} or {e, b, ak, b(k)}, then the subsloop <S> of 
2L1 is the same subsloop <S> in 2L1. For the same reason above, if <S> is a sub-SL(n), 
then <S> = <S> = L1 contradicting the fact that b <S>. Moreover if <S>  A > 4, then 
<S> = A  or <S>  A; i.e., <S>  is a sub-SL(8) or  <S> = 2L1. 
Now, assume that <S>  A = {e, b(i), aj, ak}, {e, b(j), ai, ak}, {e, b(k) , ai, aj} or {e, b(i), b(j), 
b(k)} and <S> = n` ≤ n; i. e. n` = 8, 10 or 14 for n = 14. We will find a contradiction if n`= 10 
or 14 for n = 14.  
Each of these four possible blocks contains at least one element b(t) lying in P2,  for  t = i,  j or 
k. By taking b(t)  <S>  A, if br or as  <S> -  A , then b(t)  br P1 or  b(t)  as P2 , This 
means that the (n` - 4)-element subset  <S> -  A  consists of two disjoint  m-element subsets {as1

, 

as2
, … , asm

}  P1 and {br1
, br2

, … , brm
}  P2  with m = (n` - 4)/2 ; i. e. m = 3 or 5 for n =14 . 

For the first three cases: <S>  A = {e, b(i), aj, ak}, {e, b(j), ai, ak} or {e, b(k), ai, aj}, we have 
for 
at  < >S   A that  at  {as1

, as2
, … , asm

}  {e, ai, aj, ak} =  and at  {as1
, as2

, … , asm
} = 

at  {as1
, as2

, … , asm
}   P1. Also, at  {as1

, as2
, … , asm

}  {as1
, as2

, … , asm
} because m = 3 or 

5 (not even), hence <S> -  A contains more than m elements of P1. This means that <S> consists 
of the 4-element subset <S>  A, an m-element subset of P2 and more than m elements lying in 
P1.  hence <S> has more than n elements for n` = n = 14, hence <S> must be equal to 2L1. If 
n` = 10 and n =14, then <S> has more than 10 elements, i.e. <S> = 14 or 28. If <S> = 14, 
then n` = n =14, hence by the preceding argument <S> must be equal to 2L1. 
For the last case <S>  A = {e, b(i), b(j), b(k)} and for the same reason of the above case the 
set  <S> -  A contains {as1

, as2
, … , asm

}  P * b1 and  { r1
, br2

, … , brm
}  P2. Let <S>* be the 

STS(s - 1) associ ted witha  <S>. Since {as1
, as2

, … , asm
}  {ai, aj, ak} = , it follows that the 

subset {e, as1
, as2

, … , asm
} forms a subsloop of <S> and also a subsloop of L1. Since L1 is 

planar, m must be equal 3. Then the STS(s - 1) = <S>* associated with <S> is an STS(9) 
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containing the blocks {b(i), b(j), b(k)} and {as1
, as2

, as3
}. Which means that the triple 

{br1
, br2

, br3
}  P2 must  also be a block of <S>* , which contradicts the fact that the 

construction 2  L1 contains exactly one block, {b(i), b(j), b(k)} lying completely in P2. 
Consequently, we can say that the case <S>  A = {e, b(i), b(j), b(k)} is also ruled out. 
According to the above discussion of all possible cases of <S>  A, we may deduce that the 
subsloop <S> is equal to a sub-SL(8) or the whole sloop 2L1

sloop 2
. This means that for n = 14 the 

L1 has no sub-SL(n`)s for all n` satisfying 8  n` ≤ n. 
Secondly, we have to prove that 2  L1 has no proper congruence.  Assume that 2  L1 has a 
congruence , if [e] = 8 or 4, then 2L1  has a sub-SL(16), which contradicts the proof of 
the first  part, hence we may say that [e] = {e, x}. If [e]  A = {e}, then [A] is a sub-SL(16), 
which is impossible. Hence [e]  A = [e]. Say [e] = {e, ai}  A and suppose that {aj, ar, as} 
is a block such that {aj, ar, as}   {ai, aj, ak} = {aj} for i  j, so we have [e]  [aj]  [ar]  
[as] = {e, ai, aj, ai  aj, ar, ai  ar, as, ai  as} = { e, ai, aj, b(k), ar, al, as, ah}, where al = ai  ar  
and ah = ai  as . But b  (k)  a  = bv  b (  contradicts the fact that [e]   [a ]  [a ] [a ] r  k) j r s

is an 
8-element subsloop. 
Now suppose that [e] = {e, b(i)}  A and assume that {aj, br, bs} is a block such that 
{aj, br, bs }  A = {aj} for i  j.  So we have  [e]  [aj]  [br] [bs] =  {e, b(i), aj,  b(i)  
aj, br, b(i)  br, bs, b(i)  bs} = { e, b(i) , aj, ak , br, al, bs , ah}, where  b(i) = aj  ak, al = b(i)  
br and ah = b(i)  bs.  If aj  al = ah , then ak  al   [e]  [ai]  [br]  [bs] contradicts the 
fact that [e]  [ai]  [br]  [bs] must be a sub-SL(8). 
Now, assume that [e] = {e, b}  A and suppose that {l, m, n} is a line in X such that {α(l), α(m), 
α(n)} is not a line in X, then [e]  [al ]  [am ] [an ]  = {e, b, al, b(l), am, b(m), an, b(n)}. 
But according to Lemma 3, the set {e, b, al, b(l), am, b(m), an, b(n)} does not form an SL(8). 
This means that 2L1 has no congruence  with [e] = {e, x}, which implies that t
onstructed 2

he 
c  L 1

/6. The proof is complete. �   
 

According to Theorem 5 and Theorem 6, we may say that for n = 14 and r = 26, the 
constructed sloop SL(2n) = 2

 is a semi-planar SL(2n)  for n = 14 and for all possible r satisfying 0  r  (n-
1)(n-2)                   

L1 has r = (n - 1)(2n - 4)/12 sub-SL(8)s passing through the sub-
SL(2) = {e, b}. But 2L1 has no sub-SL(n)s.  So 2L1 has exactly one proper congruence  
with [e] = {e, b}. This means that the constructed sloop SL(2n) = 2L1 for n = 14 is 
subdirectly irreducible having only one  proper homomorphic image isomorphic to the sub-
SL(n). Note that the subdirectly irreducible SL(2n) = 2L1 differs from the subdirectly 

reducible SL(2n) = 2L1 given in section 3. 
 

ir
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5 Examples for each possible class of SL(28)s 
 
We wil

factorizations on the 4-element subsloops. And let T  = (P*
1; B ) be the 

corresp

 where 
B12 = {

hic 
copy o

l use the same notations given in section 2 to construct all possible subdirectly irreducible 
SL(28)s, and so also all possible simple SL(28)s, as follows: 

Let L1 = (P1 = P*
1  {e};  , e) be a planar sloop, in which the 1-factorization F(L1) have 

only sub-1- 1 1

onding STS(n - 1), where P*
1 = {a1, a2, … , an - 1 }. Consider the set  P2 = {b, b1, … , bn -

1} such that P1 ∩ P2 =  .  
The constructed STS(2n - 1) = 2T1 is defined by (P* = P*

1 P2; B = B1  B12),
{ai, bj, bk} :  bj bk  G(i)} [11]. The associated SL(2n)  2  L1 =  (P = P*  {e};  , e) 

has always the sub-SL(n) = L1 for each permutation α. So L1 is always normal of 2L1.  
By choosing a block {ai, aj, ak} B1 and interchanging a sub-STS(7) with an isomorp

n the set  A* ={ ai, aj, ak, b, bi, bj, bk} in the STS(2n - 1) = 2T1, we get again a triple 
system 2T1 = (P*; B - H  R) in which  the associated SL(2n) = 2L1 is a simple sloop.  

In [4], we have verified all classes of nonsimple SL(20)s, six classes of SL(20)s 
(STS(19)s) having one sub-SL(10) (sub-STS(9)) and r sub-SL(8)s  (sub-STS(7)s) for r = 0, 1, 2, 
3, 4 or

here are two classes of subdirectly irreducible SL(28)s, one of them 
is the d

and 
a2, a3, a6} which replaced by {a1, a2, a3}, {a1, a5, a9}, {a3, a6, a9} and {a2, a5, a6} [11]. In 

 6. Also, we have shown in [4] that there are 5 classes of simple SL(20)s (STS(19)s) 
having r sub-SL(8)s (sub-STS(7)s) for r  = 1, 2, 3, 4, 6, but no sub-SL(10) (sub-STS(9)). 

 In section 3, we have verified all classes of nonsimple SL(28)s, nine classes of SL(28)s 
(STS(27)s) having one sub-SL(14) (sub-STS(13)) and r sub-SL(8)s (sub-STS(7)s) for r = 0, 1, 
2, 3, 4, 5, 8, 11, 16. And in section 4, we have shown that there are 8 classes of simple SL(28)s 
(STS(27)s) having r sub-SL(8)s (sub-STS(7)s) for r  = 1, 2, 3, 4, 5, 8, 11, 16 but no sub-SL(14) 
(sub-STS(13)). For r = 26, t

irect product SL(14)  SL(2) and the others are SL(28)s having only one normal sub-
SL(2), but no sub-SL(14).  

It is well-known that there are exactly two non isomorphic STS(13)s [11]. Let (P*
1; B1) 

be an STS(13). The two STS(13)s  (P*
1; B1) and (P*

1; B`1) can be described as in the following: 
The set of points P*

1 = {a0, a1, … , a12}, where the numbers 0, 1, … 12 are elements of 
13 and the set of blocks B1 are the subsets {1 + i, 2 + i, 5 + i} and {1 + i, 6 + i, 8 + i} for i  
13 [11]. The other system STS(13) = (P*

1; B`1) has the same set of points P*
1. The set of 

blocks B`1 is the same set of blocks  B1 except the four blocks {a1, a2, a5}, {a5, a6, a9}, {a1, a3, 
a9} 
{
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the foll

(P 1; B1). Also, let P2 = 
{b, b0, 

(28) 2L1 = (P = P  {e};  , e) associated with the STS(27)  2T1 has the sub-
SL(14)

set of 
lines: 

 7 10, 7 8 11, 8 9 12, 9 10 0, 10 11 1, 11 12 2, 

10 2 4, 1

g the set of blocks:  

H  

b2, a1, a5}, {b5, a1, a2}} 

on the 

owing we consider the STS(13) = (P*
1; B1), in fact the same structures can be applied on 

the other STS(13) = (P*
1; B`1).  

 
Let L1 = (P1 = P*

1  {e};  , e) be the sloop associated with *

b1, … , b12}. The 1-factorizations F(L1) and G(P2) are defined as in section 2 for n = 14. 
The SL * 

 = L1 for each permutation α. So L1 is always normal in 2L1.  
We *  note that the STS = (N; X)  (P 1; B1) for N = {0, 1, … , 12}, so we get the

X = {1 2 5, 2 3 6, 3 4 7, 4 5 8, 5 6 9, 6
12 0 3, 0 1 4, 1 6 8, 2 7 9, 3 8 10, 4 9 11, 5 10 12, 6 11 0, 7 12 1, 8 0 2, 9 1 3,  

1 3 5, 12 4 6, 0 5 7}. 

By interchangin

 ={{a1, a2, a5}, {a1, b2, b5}, {a2, b1, b5}, {a5, b1, b2}}

with the set of triples  

R ={{b1, b2, b5}, {b1, a2, a5}, {

set  A* ={a1, a2, a5, b, b1, b2, b5}, we get the sloop SL(28) = 2L1 associated with the 

constructed triple system 2T1 = (P*; B - H  R). 
  

The following constructions supplies us with an example for each class of SL(28).  

1

Notice that 1 2 5 is a line in X. By choosing the permutation α satisfies that α(1 2 5) = 1 2 
5, we get the following classes: 

 
(1) α1 = idN ; i.e., α1 transfers each line into the same line in X. The constructed SL(28) = 

21L1 is nonsimple and has 26 sub-SL(8)s and one sub-SL(14); i.e.  2   L1 is 

isomorphic to SL(14)  SL(2). Also, the constructed SL(28) = 21L1  is nonsimple and 

has 26 sub-SL(8)s but no sub-SL(14). This sloop 21L1 is subdirectly irreducible having 

exactly one proper homomorphic image  SL(14). 
(2) α2 = (39) transfers only the 16 lines {1 2 5, 4 5 8, 6 7 10, 7 8 11, 10 11 1, 11 12 2, 0

, , 
 1 4, 1 6 

8  5 10 12, 6 11 0, 7 12 1 8 0 2, 9 1 3, 10 2 4, 12 4 6, 0 5 7} into lines. The constructed 
SL(28) = 22L1 is nonsimple and has 16 sub-SL(8)s and one sub-SL(14) and the 

constructed SL(28) = 22L1  is simple and has 16 sub-SL(8)s but no sub-SL(14). 

(3) α3 = (39) (04) transfers 11 lines into lines; the set of the 11 lines is {1 2 5, 6 7 10, 7 8 11, 10 
11 1, 11 12 2, 0 1 4, 1 6 8, 5 10 12, 7 12 1, 9 1 3}.  
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(4) α4 = (347)(89) transfers only 8 lines into lines, it preserves the 7 lines 1 2 5, 3 4 7, 8 9 12, 
10 11 1, 11 12 2, 6 11 0, 5 10 12 and transfers the line 4 9 11 into the line 7 8 11.  

2, 

o lines. 
lines. 

(8  α8 = (1 2) (4 6 8 11) (0 9 10) transfers only the 2 lines {1 2 5, 9 10 0} into lines. 
(9) α

-SL(14) and r sub-

(5) α5 = (347) (89) (10 11) transfers 5 lines. α5 preserves the set of lines {1 2 5, 3 4 7, 8 9 1
10 11 1} and transfers the line 3 8 10 into the line 4 9 11. 

(6) α6 = (1 2) (3 4 6 8 11) transfers only the 4 lines {1 2 5, 9 10 0, 5 10 12, 0 5 7} int
(7) α7 = (1 2) (3 4 6 8 11) (0 7) transfers only the 3 lines {1 2 5, 5 10 12, 0 5 7} into 

)

9 = (1 2) (3 4 6 8 11) (0 12) transfers only the line 1 2 5 into a line (into itself). 
 

The constructed SL(28) = 2L1 is non-simple and has one sub
SL(8)s. The constructed SL(28) = 2L1 is simple and has r sub-SL(8)s but no sub-SL(14), 
where 
r = 16, 11, 8, 5, 4, 3, 2, 1 for  = 2, 3, 4, 5, 6, 7, 8, 9,  respectively. 

The subsloops of the above examples mentioned in both items for n = 14 are the normal 
SL(n) =

(10) α10 = (1 2) (3 5) (6 8 9 11) does not transfer any line into a line. The constructed 
SL(28) = 2L1 is nonsimple and has one sub-SL(14), but no sub-SL(8)s. 

 

 L1 and the sub-SL(8)s determined by the set  {e, ai, aj, ak, b, b(i), b(j), b(k)}, where {i, 
j, k} and {α(i), α(j), α(k)} are lines belonging to the set X. 
 

Similarly, we can also construct all possible classes of subdirectly irreducible SL(2n)s = 
2L1 and simple SL(2n)s =2L1 for each possible n  14. If we begin with a planar SL(n) = 
L1 satisfying that all proper sub-1-factorizations of the 1-factorization F(L1) are defined only on 
the sub (4)s of L1, then one can apply Theorems 3, 4, 5, 6  to determine all possible classes of 
SL(2n)s for each n > 14. One need only determine the values of the number r of the sub-SL(8)s 

 

 SL(2n)s for small value of 2n (2n = 16, 20, 28)  

 

It is we

or 2n =16 [2, 5, 11], it is well-known that the possible nontrivial subsloops are only the 
sub-SL SL(16)s are: 

-SL

of the constructed SL(2n) for each cardinality n.  

 

6 Classification of
  
In this section we summarize the classes of SL(n)s for each possible  n < 32. All classes of SL(32)s
are determined in [3].    

ll-known that there are only Boolean SL(n) for n =2, 4 and 8. Also, there are only simple 
planar SL(n)s for n = 10 and 14 and simple SL(n)s for n = 22 and 26. For the cardinalities 16, 20, 
and 28, we have the following classes:  

F
(8)s and the classes of 
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Type of SL(16)s Simple SL(16)s Nonsimple SL(16)s 

Number of sub-SL(8)s 0 1 3 7 15 

Interested property Planar Subdirectly irreducible Boolean SL(2)4 

 
For 2n =20 [4], the possible nontrivial subsloops are sub-SL(8)s and sub-SL(10). We 

note that there is only one SL(10). According to the results given in [4], all classes of SL(20)s 
are: 

 

Type of SL(20)s Simple SL(20)s Nonsimple SL(20)s 

Number of sub-
SL(10)s 

0 1 1 1 1 1 1 0 1 

Number of sub-
SL(8)s 

0 1 2 3 4 6 0 1 2 3 4 6 12 12 

Interested 
property 

P
lanar 

Semi-planar Subdirectly irreducible 

having only one proper congruence. 

S
L

(10)  S
L

(2) 

 

These classes are in complete agreement with the results determined by computer 
programs for STS(19)s given in [10]. 

For 2n =28, the possible nontrivial subsloops are sub-SL(8)s, sub-SL(10)s and sub-
SL(14)s. According to Lemma 1, an SL(28) with sub-SL(14) has no sub-SL(10)s. It is well-
known that there are two distinct SL(14)s [11]. For each SL(14), the classes of SL(28)s are: 

Type of 
SL(28)s Simple SL(28)s Nonsimple SL(28)s 

Number of sub-
SL(14)s 

0 1 1 1 1 1 1 1 1 1 0 1 

Number of sub-
SL(8)s 

0 1 2 3 4 5 8 

11 

16 

0 1 2 3 4 5 8 

11 

16 

26 

26 

Interested 
property 

P
lanar 

Semi-planar Subdirectly irreducible 
having only one proper congruence. 

S
L

(14)  S
L

(2) 
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The above classes of SL(28)s are all possible classes having no sub-SL(10)s. Of course 
there are other classes of SL(28)s (STS(27)s) having sub-SL(10)s (sub-STS(9)s), for example 
the direct product STS(9)  STS(3). So, we are faced with the question about the classes of 
SL(28)s (STS(27)s) having sub-SL(10)s (sub-STS(9)s).    

In general for n  16, if we begin with a planar SL(n) = L1 having a 1-factorization F(L1) 
on L1 satisfying that proper sub-1-factorizations of F(L1) exist only on the sub-SL(4)s of L1, we 
may construct all possible classes that can be constructed by the doubling construction of triple 
systems; namely, the constructions SL(2n) = 2  L1 and SL(2n) = 2  L1; i.e., we can 
construct all possible classes of nonsimple SL(2n)s  having a planar sub-SL(n) or a normal sub-
SL(2), and all possible classes of simple SL(2n)s having only sub-SL(8)s.  
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