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The n-th Jacobsthal number (n > 0) is defined by

(see, e.g., [1]).
The first ten members of the sequence {J,} are
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Now, we generalize these numbers to the form:
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where n > 0 is a natural number and s > 0 is a real number.
Obviously, when s = 2 we obtain the standard Jacobsthal numbers.
The first five members of the sequence {J*} with respect to n are
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In the case s = 0 we obtain

In the case s = 1 we obtain .
" 2
and the first ten members of sequence {J!} with respect to n are
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In the case s = 3 we obtain . .
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and the first ten members of sequence {J3} with respect to n are
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Theorem 1. For every natural number n > 0 and real number s > 0
Joor = 8. T+ (<)

Proof. Directly it can be checked that for each n > 0:
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The next step of generalization of the Jacobsthal numbers has the form:
s — (_t)n
s+t

where n > 0 is a natural number and s # —t are arbitrary real numbers.
It is possible to consider also the case s = —t. In this case we define
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For the right side of this equality we apply the L’Hopital’s rule and obtain
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Respectilevy,
Jot = n.s" L.
We can prove, as above
Theorem 2. For every natural number n > 0 and real numbers s, ¢
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Proof. Let s # —t. Then it can be directly checked that for each n > 0:
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When s = —t, then
=+ 1).s"=ns"s+ 5" =5.J0 4 (—(—s))".

The theorem is proved.
Finally, we mention the following equalities.

0,0
JO0 — 0,
17_1 J—
J, n,
JZ,O — 871—17
0,t __ n—1

The author is very thankfull to his colleague and friend Mladen Vassilev-Missana for
the useful discussion.

References

[1] Ribenboim, P. The Theory of Classical Variations, Springer, New York, 1999.

39



