SOME RESULTS ON MULTIPLICATIVE FUNCTIONS

Mladen Vassilev - Missana 5, V. Hugo Str., Sofia–1124, Bulgaria e-mail:*missana@abv.bg*

Abstract: In the present paper some new results, concerning multiplicative functions with strictly positive values, are obtained. In particular, it is shown that if an ordered pair of such functions (f,g) has a certain property (called in the paper S), then for every fixed positive integer n, the minimal and the maximal elements of the set $\{f(d)g(\frac{n}{d}) : d \text{ runs over all divisors of } n\}$ are obtained at least for some unitary divisors of n. For these divisors if the maximum of $f(d)g(\frac{n}{d})$ is reached for d^* , then the minimum is reached for $\frac{n}{d^*}$ and vice versa (the main results here are Theorems 1-4). The same ivestigation is made, but when d runs over the set of all divisors of n different than 1 and n (the main result here is Theorem 5). Also corollaries of the mentioned results are obtained and some particular cases are considered.

Keywords: Multiplicative functions, Divisors, Unitary divisors, Non-unitary divisors

1. Introduction

1.1. Used Denotations

1.2. Observations regarding the above denotations

It is clear that:

$$\mathbb{D}_n = \mathbb{D}'_n \cup \mathbb{D}''_n; \quad \mathbb{D}'_n \cap \mathbb{D}''_n = \emptyset$$

and $\mathbb{D}'_n \neq \emptyset$ since $1 \in \mathbb{D}'_n$ and $n \in \mathbb{D}'_n$, while $\mathbb{D}''_n = \emptyset$ at least when $n \in \mathbb{P}$.

Also, it is clear that $L_n(f,g), l_n(f,g), L'_n(f,g), l'_n(f,g)$ always exist and are non-empty sets, while $L''_n(f,g)$ and $l''_n(f,g)$ are non-empty sets only when $\mathbb{D}''_n \neq \emptyset$. The following relations are obvious:

$$L'_{n}(f,g) \cap l'_{n}(f,g) = \emptyset;$$

$$L''_{n}(f,g) \cap l''_{n}(f,g) = \emptyset;$$

$$L_{n}(f,g) \subseteq L'_{n}(f,g) \cup L''_{n}(f,g);$$

$$l_{n}(f,g) \subseteq l'_{n}(f,g) \cup l''_{n}(f,g).$$

2. Main results

The set of all multiplicative functions is well studied. We recommend the following book [2] to the interested reader, wherein many properties and results are collected. Below we shall study some new properties of a class of multiplicative functions. First we need the following:

Definition. Let $f, g \in \mathbb{M}$. We say that the ordered pair (f, g) has the property \mathbb{S} when one of the following two cases is fulfilled:

(i) $\forall p \in \mathbb{P} \& \forall m \in \mathbb{Z}^+$

$$H_{p,m}^{f,g}(k) \stackrel{\text{def}}{=} f(p^k)g(p^{m-k}) \tag{1}$$

is an increasing function (not necessarily strictly) with respect to $k \in [0, m] \cap \mathbb{Z}^+$

(ii) $\forall p \in \mathbb{P} \& \forall m \in \mathbb{Z}^+$ the function $H_{p,m}^{f,g}$ from (1) is a decreasing function (not necessarily strictly) with respect to $k \in [0,m] \cap \mathbb{Z}^+$

Our first main result is:

Theorem 1. Let $n \in \mathbb{N}$ is such that $\mathbb{D}''_n \neq \emptyset$ and $f, g \in \mathbb{M}$ are such that the ordered pair (f, g) has the property \mathbb{S} . Then:

$$\max_{d \in \mathbb{D}_n'} f(d)g\left(\frac{n}{d}\right) \le \max_{d \in \mathbb{D}_n'} f(d)g\left(\frac{n}{d}\right) \tag{*1}$$

$$\min_{d \in \mathbb{D}'_n} f(d)g\left(\frac{n}{d}\right) \le \min_{d \in \mathbb{D}''_n} f(d)g\left(\frac{n}{d}\right) \tag{*2}$$

Proof. Let $d'' \in \mathbb{D}''_n$ and $gcd(d'', \frac{n}{d''}) = r$. Then r > 1 and r admits the canonical factorization in primes of the form:

$$r = \prod_{i=1}^{s} p_i^{\alpha_i} \tag{2}$$

where $s \in \mathbb{N}$, $\alpha_i \in \mathbb{Z}^+$, $i = 1, \ldots, s$ and $\sum_{i=1}^s \alpha_i > 0$. Since r is a divisor of d'', d'' admits the representation:

$$d'' = Q \prod_{i=1}^{s} p_i^{\beta_i} \tag{3}$$

where $\beta_i \geq \alpha_i$ and $Q \geq 1$ is coprime with each of $p_i, i = 1, ..., s$. Let

$$P = \prod_{i=1}^{s} p_i^{\beta_i} \tag{4}$$

Then

$$d'' = PQ \tag{5}$$

with gcd(P,Q) = 1. Since $d'' \in \mathbb{D}''_n$, then d'' is a divisor of n. Hence:

$$n = T. \prod_{i=1}^{s} p_i^{m_i} \tag{6}$$

where $m_i \ge \beta_i$ and $T \ge 1$ is coprime with each of $p_i, i = 1, ..., s$. From (3) and (6) it follows:

$$\frac{n}{d''} = \frac{T}{Q} \prod_{i=1}^{s} p_i^{m_i - \beta_i} \tag{7}$$

where $\frac{T}{Q} \in \mathbb{N}$ is coprime with each of $p_i, i = 1, \ldots, s$. The element d'' generates the following two elements of \mathbb{D}_n given by:

$$d = \frac{d''}{r} \tag{a_1}$$

$$d = rd'' \tag{a2}$$

Since $f \in \mathbb{M}$ and (2) and (3) are valid, for the case (a_1) we obtain:

$$f(d) = f\left(\frac{d''}{r}\right) = f(Q)\prod_{i=1}^{s} p_i^{\beta_i - \alpha_i} = f(Q)\prod_{i=1}^{s} f(p_i^{\beta_i - \alpha_i})$$

From (5) we find:

$$f(Q) = \frac{f(d'')}{f(P)} \tag{8}$$

(with P from (4)) and substitute (8) in the previous equality. Thus, using that $f \in \mathbb{M}$ we obtain:

$$f(d) = f(d'') \prod_{i=1}^{s} \frac{f(p_i^{\beta_i - \alpha_i})}{f(p_i^{\beta_i})}$$
(9)

In the same way $g \in \mathbb{M}$, (2), (6) and (7) yield:

$$g\left(\frac{n}{d}\right) = g\left(\frac{nr}{d''}\right) = g\left(\frac{T}{Q}\prod_{i=1}^{s}p_i^{m_i+\alpha_i-\beta_i}\right) = g\left(\frac{T}{Q}\right)\prod_{i=1}^{s}g\left(p_i^{m_i-(\beta_i-\alpha_i)}\right)$$

From (7) we find

$$g\left(\frac{T}{Q}\right) = \frac{g\left(\frac{n}{d''}\right)}{\prod_{i=1}^{s} g\left(p_i^{m_i - \beta_i}\right)} \tag{10}$$

and putting this in the previous equality obtain:

$$g\left(\frac{n}{d}\right) = g\left(\frac{n}{d''}\right)\prod_{i=1}^{s} \frac{g\left(p_i^{m_i-(\beta_i-\alpha_i)}\right)}{g\left(p_i^{m_i-\beta_i}\right)}$$
(11)

Now (9) and (11) yield:

$$f(d)g\left(\frac{n}{d}\right) = \xi \cdot f(d'')g\left(\frac{n}{d''}\right) \tag{12}$$

where

$$\xi \stackrel{\text{def}}{=} \prod_{i=1}^{s} \xi_i \tag{13}$$

and

$$\xi_i \stackrel{\text{def}}{=} \frac{H_{p_i,m_i}^{f,g}(\beta_i - \alpha_i)}{H_{p_i,m_i}^{f,g}(\beta_i)}, i = 1, \dots, s.$$

$$(14)$$

The case (a_2) , because of (2), (3) and $f \in \mathbb{M}$, yields:

$$f(d) = f(rd'') = f\left(Q\prod_{i=1}^{s} p_i^{\alpha_i + \beta_i}\right) = f(Q)\prod_{i=1}^{s} f(p_i^{\alpha_i + \beta_i})$$

Using (8) and the above equality we obtain:

$$f(d) = f(d'') \prod_{i=1}^{s} \frac{f(p_i^{\alpha_i + \beta_i})}{f(p_i^{\beta_i})}$$
(15)

In the same way $g \in \mathbb{M}$, (2),(6) and (7) yield:

$$g\left(\frac{n}{d}\right) = g\left(\frac{n}{rd''}\right) = g\left(\frac{T}{Q}\prod_{i=1}^{s}\frac{p_i^{m_i}}{p_i^{\alpha_i+\beta_i}}\right) = g\left(\frac{T}{Q}\prod_{i=1}^{s}p_i^{m_i-(\alpha_i+\beta_i)}\right) = g\left(\frac{T}{Q}\prod_{i=1}^{s}g\left(p_i^{m_i-(\alpha_i+\beta_i)}\right)$$

After using (10), the above equality yields:

$$g\left(\frac{n}{d}\right) = g\left(\frac{n}{d''}\right) \prod_{i=1}^{s} \frac{g\left(p_i^{m_i - (\alpha_i + \beta_i)}\right)}{g(p_i^{m_i - \beta_i})}$$
(16)

From (15) and (16) we obtain

$$f(d)g\left(\frac{n}{d}\right) = \eta f(d'')g\left(\frac{n}{d''}\right) \tag{17}$$

where

$$\eta \stackrel{\text{def}}{=} \prod_{i=1}^{s} \eta_i \tag{18}$$

and

$$\eta_i \stackrel{\text{def}}{=} \frac{H_{p_i,m_i}^{f,g}(\alpha_i + \beta_i)}{H_{p_i,m_i}^{f,g}(\beta_i)}, i = 1, \dots, s.$$

$$(19)$$

Further we shall consider the following four possibilites:

 (a_1) is valid & (i) holds (a_{11})

$$(a_1)$$
 is valid & *(ii)* holds (a_{12})

$$(a_2)$$
 is valid & (i) holds (a_{21})

$$(a_2)$$
 is valid & *(ii)* holds (a_{22})

For (a_{11}) we have $\xi_i \leq 1$, $i = 1, \ldots, s$ and therefore $\xi \leq 1$ (see (12), (13) and (14)). Hence:

$$f(d)g\left(\frac{n}{d}\right) \le f(d'')g\left(\frac{n}{d''}\right) \tag{20}$$

For (a_{12}) we have $\xi_i \ge 1$, $i = 1, \ldots, s$ and therefore $\xi \ge 1$. Hence:

$$f(d)g\left(\frac{n}{d}\right) \ge f(d'')g\left(\frac{n}{d''}\right) \tag{21}$$

For (a_{21}) we have $\eta_i \ge 1$, $i = 1, \ldots, s$ and therefore $\eta \ge 1$ (see (17), (18) and (19)). Hence (21) holds.

For (a_{22}) we have $\eta_i \leq 1, i = 1, \ldots, s$ and therefore $\eta \leq 1$. Hence (20) holds.

Let (i) hold.

First, let d'' be the maximal element of $L''_n(f,g)$. Then we introduce d using the substitution (a_2) . Therefore $d \in \mathbb{D}_n$ but $d \notin L''_n(f,g)$, since d > d''. The assumption $d \in \mathbb{D}''_n$ yields:

$$f(d)g\left(\frac{n}{d}\right) < f(d'')g\left(\frac{n}{d''}\right)$$
(22)

On the other hand, because of (i) and (a_2) , (a_{21}) holds and therefore (21) holds, which contradicts to the above inequality. Therefore the assumption $d \in \mathbb{D}''_n$ is wrong. Hence $d \in \mathbb{D}'_n$. But if $d \in \mathbb{D}'_n$ then (21) yields $(*_1)$.

Second, let d'' be the minimal element of $l''_n(f,g)$. Then we introduce d using the substitution (a_1) . Therefore $d \in \mathbb{D}_n$ but $d \notin l''_n(f,g)$, since d < d''. The assumption $d \in \mathbb{D}''_n$ yields:

$$f(d)g\left(\frac{n}{d}\right) > f(d'')g\left(\frac{n}{d''}\right) \tag{23}$$

On the other hand, because of (i) and (a_1) , (a_{11}) holds and therefore (20) holds, which contradicts to the above inequality. Therefore the assumption $d \in \mathbb{D}''_n$ is wrong. Hence $d \in \mathbb{D}'_n$. But if $d \in \mathbb{D}'_n$ then (20) yields $(*_2)$. Let (ii) hold.

First, let d'' be the minimal element of $L''_n(f,g)$. Then we introduce d using the substitution (a_1) . Therefore $d \in \mathbb{D}_n$ but $d \notin L''_n(f,g)$, since d < d''. The assumption $d \in \mathbb{D}''_n$ yields (22). On the other hand, because of (*ii*) and (a_1) , (a_{12}) holds and therefore (21) holds, which contradicts to (22). Therefore the assumption $d \in \mathbb{D}''_n$ is wrong. Hence $d \in \mathbb{D}'_n$. But if $d \in \mathbb{D}'_n$ then (21) yields $(*_1)$.

Second, let d'' be the maximal element of $l''_n(f,g)$. Then we introduce d using the substitution (a_2) . Therefore $d \in \mathbb{D}_n$ but $d \notin l''_n(f,g)$, since d > d''. The assumption $d \in \mathbb{D}''_n$ yields (23). On the other hand, because of *(ii)* and *(a_2)*, *(a_{22})* holds and therefore (20) holds, which contradicts to (23). Therefore the assumption $d \in \mathbb{D}''_n$ is wrong. Hence $d \in \mathbb{D}'_n$. But if $d \in \mathbb{D}'_n$ then (20) yields $(*_2)$.

Theorem 1 is proved.

Corollary 1. Under the conditions of Theorem 1 the relations:

$$L'_n(f,g) \subseteq L_n(f,g)$$

 $l'_n(f,g) \subseteq l_n(f,g)$

hold.

Remark 1. If the inequalities $(*_1)$ and $(*_2)$ are strict, then Theorem 1 implies:

$$L'_n(f,g) = L_n(f,g) \tag{24}$$

$$l'_{n}(f,g) = l_{n}(f,g)$$
(25)

but when $(*_1)$ and $(*_2)$ are equalities we have the relations:

$$L_n(f,g) = L'_n(f,g) \cup L''_n(f,g)$$
$$l_n(f,g) = L'_n(f,g) \cup l''_n(f,g)$$

Remark 2. If $\mathbb{D}''_n = \emptyset$ then (24) and (25) stay valid.

The following assertion gives a simple connection between L'_n and l'_n .

Lemma 1. Let $n \in \mathbb{N}$ and $f, g \in \mathbb{M}$. Then it is valid:

- (j) If $d \in L'_n(f,g)$ then $\frac{n}{d} \in l'_n(f,g)$
- (jj) If $d \in l'_n(f,g)$ then $\frac{n}{d} \in L'_n(f,g)$

Proof. From the definition of \mathbb{D}'_n , if $d \in \mathbb{D}'_n$ then $\frac{n}{d} \in \mathbb{D}'_n$ and $\gcd(d, \frac{n}{d}) = 1$. When $f, g \in \mathbb{M}$ the equalities:

$$f\left(\frac{n}{d}\right) = \frac{f(n)}{f(d)}; \ g\left(d\right) = \frac{g(n)}{g\left(\frac{n}{d}\right)}$$

hold, since $gcd(d, \frac{n}{d}) = 1$. Hence:

$$f\left(\frac{n}{d}\right)g(d) = \frac{f(n)g(n)}{f(d)g\left(\frac{n}{d}\right)}$$

Therefore (j) and (jj) follow immediately from the above equality, since when d runs over \mathbb{D}'_n , then $\frac{n}{d}$ runs over \mathbb{D}'_n , too.

Lemma 1 is proved.

Our second main result is:

Theorem 2. Under the conditions of Theorem 1 it is valid:

- (k) There exists at least one element $d \in L_n(f,g)$ such that $\frac{n}{d} \in l_n(f,g)$
- (kk) There exists at least one element $d \in l_n(f,g)$ such that $\frac{n}{d} \in L_n(f,g)$

Remark 3. According to Theorem 1, for (k) such elements are contained at least in $L'_n(f,g)$, while for (kk) such elements are contained at least in $l'_n(f,g)$.

Below we must give the following important

Observation. Property S is essential for the validity of Theorem 1 and Theorem 2. Indeed, let φ be Euler's totient function and τ be the function that for a given $n \in \mathbb{N}$ coincide with the number of all the divisors of n (i.e. $\tau(n) = \sum_{d|n} 1$). Then $\varphi, \tau \in \mathbb{M}$ but the ordered pair

 (φ, τ) does not have the property \mathbb{S} , since

$$H_{2,m}^{\varphi,\tau}(k) = \varphi(2^k)\tau(2^{m-k})$$

is not a monotone function with respect to k. Let n = 32. Then all divisors of n are: 1, 2, 4, 8, 16, 32 and $\varphi(1)\tau(32) = 6$, $\varphi(2)\tau(16) = 5$, $\varphi(4)\tau(8) = 8$, $\varphi(8)\tau(4) = 12$, $\varphi(16)\tau(2) = 16$, $\varphi(32)\tau(1) = 16$. Therefore, for n = 32

$$\min_{d|n} \varphi(d)\tau\left(\frac{n}{d}\right) = \min_{d \in \mathbb{D}_{32}} \varphi(d)\tau\left(\frac{n}{d}\right) = \varphi(2)\tau\left(\frac{32}{2}\right) = 5.$$

Hence, for n = 32 we have the situation when $\min_{d \in \mathbb{D}_n} \varphi(d) \tau\left(\frac{n}{d}\right)$ is obtained for $n = 2 \in \mathbb{D}'_{32}$ and it is not obtained for any $d \in \mathbb{D}'_{32}$. Therefore, for n = 32, Theorem 1 is not valid for the ordered pair (φ, τ) , but moreover, Theorem 2 is also not valid, since for n = 32 and d = 32it is easy to see that $d \in L_{32}(\varphi, \tau)$ & $d \in \mathbb{D}'_{32}$, but $1 = \frac{n}{d} \notin l_{32}(\varphi, \tau)$.

Let $\sigma(n) = \sum_{d|n} d$ (i.e. $\sigma(n)$ is the sum of all divisors of n, including 1 and n). Then the ordered pair (φ, σ) has the property \mathbb{S} , since $\sigma \in \mathbb{M}$ and

 $H_{n,m}^{\varphi,\sigma}(k) = \varphi(2^k)\sigma(2^{m-k})$

is a decreasing function for all $p \in \mathbb{P}$ and $m \in \mathbb{Z}^+$ with respect to $k \in [0, m] \cap \mathbb{Z}^+$. Therefore for the ordered pair (φ, σ) Theorem 1 and Theorem 2 hold. The same observation is valid for the ordered pair (φ, ψ) , where $\psi \in \mathbb{M}$ is Dedekind's function, for $t \geq 2$ given by:

$$\psi(t) = t \prod_{i=1}^{\gamma} \left(1 + \frac{1}{p_i} \right)$$

where $p_i, i = 1, ..., \gamma$, are all prime divisors of t and $\psi(1) = 1$.

Remark 4. We note that the ordered pairs (σ, φ) and (ψ, φ) have the property S too, but this time their corresponding functions:

$$H_{p,m}^{\sigma,\varphi}(k) = \sigma(2^k)\varphi(2^{m-k})$$

and

$$H_{p,m}^{\psi,\varphi}(k) = \psi(2^k)\varphi(2^{m-k})$$

are increasing with respect to $k \in [0,m] \cap \mathbb{Z}^+$. Moreover, if for $f,g \in \mathbb{M}$ the ordered pair (g,f) satisfies (i), then the ordered pair (f,g) satisfies (ii) and vice versa.

One may verify that the ordered pair (σ, τ) has the property S too.

Let $x \in \mathbb{N}, x > 1$, admit the canonical factorization in primes of the form:

$$x = \prod_{i=1}^{s} p_i^{m_i} \tag{26}$$

where $s \in \mathbb{N}$, $m_i \in \mathbb{Z}^+$, $i = 1, \ldots, s$ and $\sum_{i=1}^s m_i > 0$. Then every divisor d of x has the representation:

$$d = \prod_{i=1}^{s} p_i^{k_i} \tag{27}$$

where $0 \le k_i \le m_i$, i = 1, ..., s. For such d, when $f, g \in \mathbb{M}$, from (26) and (27) we obtain:

$$f(d)g\left(\frac{x}{d}\right) = \prod_{i=1}^{s} f(p_i^{k_i})g(p_i^{m_i-k_i}) = \prod_{i=1}^{s} H_{p_i,m_i}^{f,g}(k_i)$$
(28)

Let the ordered pair (f, g) have the property S, satisfying *(ii)*. Then each one of the factors $H_{p_i,m_i}^{f,g}(k_i)$ takes its maximal value when $k_i = 0, i = 1, \ldots, s$. Hence:

$$\max_{d \in \mathbb{D}_x} f(d)g\left(\frac{x}{d}\right) = \prod_{i=1}^s g(p_i^{m_i}) = g(x)$$
(29)

because of (26) and (28).

On the other hand, since x and 1 belong to \mathbb{D}'_x , we obtain from Theorem 1 and Lemma 1, (j), that:

$$\min_{d\in\mathbb{D}_x} f(d)g\left(\frac{x}{d}\right) = f(x) \tag{30}$$

Therefore, (29) and (30) yield:

$$f(x) \le g(x). \tag{31}$$

The last inequality is valid for x = 1 too, since $f, g \in \mathbb{M}$ implies f(1) = g(1) = 1.

If the ordered pair (f, g) has the property \mathbb{S} , satisfying (i), then because of Remark 4 the ordered pair (g, f) satisfies (ii) and applying the same reasoning as above, we conclude that:

$$g(x) \le f(x) \tag{32}$$

for every $x \in \mathbb{N}$.

Thus we proved the third main result of the paper:

Theorem 3. Let $f, g \in \mathbb{M}$. The necessary condition the ordered pair (f, g) to have the property \mathbb{S} is: for every $x \in \mathbb{N}$

to be fulfilled (32) for the case (i) and to be fulfilled (31) for the case (ii).

Remark 5. We note that the above necessary condition is not a sufficient one.

Now, it is clear that when (i) holds, then it is fulfilled:

$$\max_{d\in\mathbb{D}_x} f(d)g\left(\frac{x}{d}\right) = f(x) \tag{33}$$

$$\min_{d\in\mathbb{D}_x} f(d)g\left(\frac{x}{d}\right) = g(x) \tag{34}$$

Thus we proved the fourth main result of the paper:

Theorem 4. Let $x \in \mathbb{N}$, $f, g \in \mathbb{M}$ and let the ordered pair (f, g) have the property S. If (i) holds then (33) and (34) are fulfilled, but if (ii) holds then the relations

$$\max_{d \in \mathbb{D}_x} f(d)g\left(\frac{x}{d}\right) = g(x)$$

and

$$\min_{d \in \mathbb{D}_x} f(d)g\left(\frac{x}{d}\right) = f(x)$$

are fulfilled.

Corollary 2. Let $x \in \mathbb{N}$, $f, g \in \mathbb{M}$ and let the ordered pair (f, g) have the property \mathbb{S} . If (i) holds then $x \in L_x(f,g)$ and $1 \in l_x(f,g)$, but if (ii) holds then $1 \in L_x(f,g)$ and $x \in l_x(f,g)$.

Remark 6. Since gcd(1, x) = 1, the elements 1 and x belong to \mathbb{D}'_x .

Let $x \in \mathbb{N}$ be given by (26). Up to now our considerations were related to the set D_x . Below, we will consider the set D_x^* , supposing that x is such that $D_x^* \neq \emptyset$ (i.e. $x > 1 \& x \notin \mathbb{P}$). Let us note that if d runs over D_x^* then $\frac{x}{d}$ runs over D_x^* too. Each $d \in D_x^*$ admits the representation(27) with

$$\sum_{i=1}^{s} k_i > 0 \tag{35}$$

and (28) holds.

Let $f, g \in \mathbb{M}$ and the ordered pair (f, g) satisfies *(ii)*. Then each one of $H^{f,g}_{p_i,m_i}(k)$ is a decreasing function with respect to $k \in [0, m_i] \cap \mathbb{Z}^+$, $i = 1, \ldots, s$ and (35) holds. Therefore to obtain

$$\max_{d\in\mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right)$$

we must consider the case when exactly for one of p_i , i = 1, ..., s (for example for p_j), we have $k_j = 1$ and for all others we have $k_i = 0$. In this case we have (see (28)):

$$\prod_{i=1}^{s} H_{p_i,s_i}^{f,g}(k_i) = f(p_j)g(p_j^{m_j-1}) \prod_{\substack{i=1\\i \neq j}}^{s} g(p_i^{m_i}) = f(p_j)g\left(\frac{x}{p_j}\right)$$

It remains only to take the maximal of the numbers: $f(p_j)g\left(\frac{x}{p_j}\right)$, $j = 1, \ldots, s$, to obtain:

$$\max_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \max_{1 \le j \le s} f(p_j)g\left(\frac{x}{p_j}\right)$$

If we want to obtain

$$\min_{d \in \mathbb{D}_x^*} f(d) g\left(\frac{x}{d}\right)$$

then because of the fact that $H^{f,g}_{p_i,m_i}(k)$ are decreasing functions with respect to $k \in [0,m_i] \cap$ \mathbb{Z}^+ , $i = 1, \ldots, s$, we must take exactly for one of p_i , $i = 1, \ldots, s$ (for example for p_j), $k_j = m_j - 1$ and for the others $k_i = m_i$. Hence:

$$\min_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \min_{1 \le j \le s} f\left(\frac{x}{p_j}\right)g(p_j)$$

Let $f, g \in \mathbb{M}$ and the ordered pair (f, g) satisfies (i). Then the ordered pair (g, f) satisfies (*ii*) (see Remark 4). Hence (as above):

$$\max_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \max_{1 \le j \le s} f\left(\frac{x}{p_j}\right)g(p_j);$$
$$\min_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \min_{1 \le j \le s} f(p_j)g\left(\frac{x}{p_j}\right)$$

Thus we proved the fifth main result of the paper:

Theorem 5. Let $x \in \mathbb{N} \setminus \mathbb{P}, x > 1, f, g \in \mathbb{M}$ and the ordered pair (f, g) has the property S. If (i) holds then:

$$\max_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \max_p f\left(\frac{x}{p}\right)g(p); \min_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \min_p f(p)g\left(\frac{x}{p}\right),$$

but if (ii) holds then:

$$\max_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \max_p f(p)g\left(\frac{x}{p}\right); \min_{d \in \mathbb{D}_x^*} f(d)g\left(\frac{x}{d}\right) = \min_p f\left(\frac{x}{p}\right)g(p)$$

where p runs over all prime divisors of x.

Finally, we shall consider the particular case $q \equiv 1$. In this case, property S for the ordered pair (f, 1) is expressed by the condition:

 $\tilde{\mathbb{S}}: \forall p \in \mathbb{P} \ \tilde{H}_p^f(k) \stackrel{\text{def}}{=} f(p^k)$ is increasing (decreasing) function with respect to $k \in \mathbb{Z}^+$. As a result we obtain the following theorem which is a direct corollary from Theorem 1

Theorem 6. Let $f \in \mathbb{M}$ satisfy the condition $\tilde{\mathbb{S}}$. If for a given $n \in \mathbb{N}$, $\mathbb{D}''_n \neq \emptyset$ then the inequalities:

$$\max_{d \in \mathbb{D}''_n} f(d) \le \max_{d \in \mathbb{D}'_n} f(d); \min_{d \in \mathbb{D}'_n} f(d) \le \min_{d \in \mathbb{D}'_n} f(d)$$

hold.

Let us denote:

$$L_n(f) \stackrel{\text{def}}{=} L_n(f,1); \ l_n(f) \stackrel{\text{def}}{=} l_n(f,1); \ L'_n(f) \stackrel{\text{def}}{=} L'_n(f,1); \ l'_n(f) \stackrel{\text{def}}{=} l'_n(f,1)$$

Then the following analogue of Corollary 1 is valid.

Corollary 3. Under the conditions of Theorem 6 the relations:

$$L'_n(f) \subseteq L_n(f); l'_n(f) \subseteq l_n(f)$$

hold.

Analogue of Lemma 1 now is:

Lemma 2. Let $n \in \mathbb{N}$ and $f \in \mathbb{M}$. Then it is valid:

- (\tilde{j}) If $d \in L'_n(f)$ then $\frac{n}{d} \in l'_n(f)$
- $(\tilde{j}\tilde{j})$ If $d \in l'_n(f)$ then $\frac{n}{d} \in L'_n(f)$

Finally, analogue to Theorem 2 is the following:

Theorem 7. Under the conditions of Theorem 6 it is valid:

- (\tilde{k}) There exists at least one element $d \in L_n(f)$ such that $\frac{n}{d} \in l_n(f)$
- $(\tilde{k}\tilde{k})$ There exists at least one element $d \in l_n(f)$ such that $\frac{n}{d} \in L_n(f)$.

Remark 7. Let $f \in \mathbb{M}$ satisfy the condition \mathbb{S} . Due to f(1) = 1, if (v) $\tilde{H}_p^f(k)$ is an increasing function with respect to $k \in \mathbb{Z}^+$ holds, then $\forall m \in \mathbb{N}$ $f(m) \ge 1$, but if (vv) $\tilde{H}_p^f(k)$ is a decreasing function with respect to $k \in \mathbb{Z}^+$ holds, then $\forall m \in \mathbb{N}$ $f(m) \le 1$.

Remark 7 is due to Theorem 3 with $g \equiv 1$. If (v) holds then for $d \in \mathbb{D}'_n$ we obtain

$$f(n) = f\left(d, \frac{n}{d}\right) = f\left(d\right) f\left(\frac{n}{d}\right) \ge f(d)$$

Hence:

$$n \in L'_n(f) \subseteq L_n(f)$$

while

$$1 \in l'_n(f) \subseteq l_n(f)$$

If (vv) holds then for $d \in \mathbb{D}'_n$ we obtain

$$f(n) = f\left(d, \frac{n}{d}\right) = f\left(d\right) f\left(\frac{n}{d}\right) \le f(d)$$

Hence:

$$n \in l'_n(f) \subseteq l_n(f)$$

while

$$1 \in L'_n(f) \subseteq L_n(f)$$

The above is due to Theorem 4 with $g \equiv 1$ and Corollary 2. The analogue of Theorem 5, which is due to $g \equiv 1$, is **Theorem 8.** Let $x \in \mathbb{N} \setminus \mathbb{P}, x > 1, f \in \mathbb{M}$ and f satisfies the condition \mathbb{S} . If (v) holds then:

$$\max_{d \in \mathbb{D}_x^*} f(d) = \max_p f\left(\frac{x}{p}\right); \min_{d \in \mathbb{D}_x^*} f(d) = \min_p f(p),$$

but if (vv) holds then:

$$\max_{d \in \mathbb{D}_x^*} f(d) = \max_p f(p); \min_{d \in \mathbb{D}_x^*} f(d) = \min_p f\left(\frac{x}{p}\right)$$

where p runs over all prime divisors of x.

Remark 8. We note that each of the well-known functions φ , ψ , σ , τ , which belong to \mathbb{M} , satisfies the condition $\tilde{\mathbb{S}}$ (case (v)). Therefore for these functions Theorem 6, Theorem 7 and Corollary 3 are valid.

Acknowledgement The author expresses his deepeest gratitude to Prof. Krassimir Atanassov who pointed him towards this area of research and showed him some results for functions φ and σ which suggested the idea of the present investigation.

References

- [1] Weisstein, Eric W. "Unitary Divisor." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/UnitaryDivisor.html
- [2] Sivaramakrishnan, R. Classical Theory of Arithmetic Functions. New York, Dekker, 1989.