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Abstract: An edge-colored graph G is rainbow edge-connected if any two vertices are con-
nected by a path whose edges have distinct colors. The rainbow connection of a connected
graph G, denoted by rc(G), is the smallest number of colors that are needed in order
to make G rainbow connected. Similarly, a vertex-colored graph G is rainbow vertex-
connected if any two vertices are connected by a path whose internal vertices have distinct
colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the
smallest number of colors that are needed in order to make G rainbow vertex-connected.
We prove that both rc(G) and rvc(G) have sharp concentration in classical random graph
model G(n, p).
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1. Introduction

We follow the terminology and notation of [4] in this letter. A natural and interesting
connectivity measure of a graph was recently introduced in [6] and has attracted many
attention of researchers. An edge-colored graph G is called rainbow edge-connected if any
two vertices are connected by a path whose edges have distinct colors. Hence, if a graph is
rainbow edge-connected, then it must also be connected. Also notice that any connected
graph has a trivial edge coloring that makes it rainbow edge-connected. The rainbow
connection of a connected graph G, denoted rc(G), is the smallest number of colors that
are needed in order to make G rainbow edge-connected.

If G has n vertices then rc(G) ≤ n−1, since one can color the edges of a given spanning
tree of G with distinct colors, and color the remaining edges with one of the already used
colors. Obviously, rc(G) = 1 if and only if G is a complete graph, and that rc(G) = n− 1
if and only if G is a tree. An easy observation gives rc(G) ≥ diam(G), where diam(G)
denotes the diameter of G. The behavior of rc(G) with respect to the minimum degree δ(G)
has been addressed in the work [5, 10, 11], which indicate that rc(G) is upper bounded by
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the reciprocal of δ(G) up to a multiplicative constant (which we will discuss later). Some
related concepts such as rainbow path [9], rainbow tree [8] and rainbow k-connectivity [7]
have also been investigated recently.

The authors in [10] introduce a vertex coloring edition. A vertex-colored graph G is
called rainbow vertex-connected if any two vertices are connected by a path whose internal
vertices have distinct colors. Denote the rainbow vertex-connection of a connected graph
G by rvc(G), which is defined as the smallest number of colors that are needed in order
to make G rainbow vertex-connected. It is clear that rvcG ≤ n− 2, and rvcG = 0 if and
only if G is complete. Similarly, we have rvcG ≥ diam(G)− 1.

Note that rc(G) and rvc(G) are both monotonic property in the sense that if we add
an edge to G we cannot increase its rainbow edge/vertex-connection. Therefore, it is
desirable to study the random graph setting [3]. Motivating this idea, in this paper we
consider the rainbow edge/vertex-connection in Erdős-Rényi random graph model G(n, p)
with n vertices and edge probability p ∈ [0, 1]. Based on some known bounds of diameter
and degree of G(n, p), we establish the following concentration results:

Theorem 1. Suppose that ω = ω(n) → −∞ and c = c(n) → 0. Let d = d(n) ≥ 2 be a
natural number and 0 < p = p(n) < 1. If

np = lnn+
20n ln lnn

d+ 1
− ω, (1)

pdnd−1 = ln
(n2

c

)
(2)

and
pn

(lnn)3
→∞ (3)

hold, then rc(G(n, p)) = d almost surely as n→∞.

Theorem 2. Suppose that ω = ω(n) → −∞ and c = c(n) → 0. Let d = d(n) ≥ 2 be a
natural number and 0 < p = p(n) < 1. If

np = lnn+
11n ln lnn

d
− ω, (4)

pdnd−1 = ln
(n2

c

)
(5)

and
pn

(lnn)3
→∞ (6)

hold, then rvc(G(n, p)) = d− 1 almost surely as n→∞.

2. Proof of Theorem 1 and 2

In this section, we will first prove Theorem 1 and then Theorem 2 can be derived
similarly.

Let δ(G) be the minimum degree of a graph G. The following lemma gives upper
bounds of rainbow edge/vertex-connection.
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Lemma 1.([10]) A connected graph G with n vertices has rc(G) < 20n/δ(G) and rvc(G) <
11n/δ(G).

Proof of Theorem 1. By Lemma 1 and the comments in the Section 1, we have

diam(G(n, p)) ≤ rc(G(n, p)) < 20n/δ(G(n, p)) (7)

if G(n, p) is connected.
To get the concentration result, we need to estimate the diameter and minimum degree

of random graph G(n, p). It follows from the assumptions (2) and (3) that diam(G(n, p)) =
d almost surely (see [2] or [3] pp.259). By the assumption (1), we get δ(G(n, p)) = 20n/(d+
1) (see [1] or [3] pp.65). Now we almost conclude our proof by (7).

There are nevertheless two things remain to check: (i) The assumptions (1)-(3) are
reasonable, that is, there really exist such p and d. (ii) G(n, p) is almost surely connected.

Define c = c(n)→ 0 by the equation

ln ln
(n2

c

)
= (lnn) · ln lnn (8)

and let ω(n)→ −∞ sufficiently slowly. By the assumption (1), we define a function of d

f(d) := (np)d =
(

lnn+
20n ln lnn

d+ 1
− ω

)d

. (9)

Take d = lnn, and we obtain

ln f(d) = (lnn) · ln
(

lnn+
20n ln lnn

1 + lnn
− ω

)
≥ (lnn) · ln

(n ln lnn

lnn

)
≥ lnn+ (lnn) · ln lnn

= ln
(
n · ln

(n2

c

))
(10)

where the last equality holds by the definition (8).
Take d = ln lnn, and we have

ln f(d) = (ln lnn) · ln(lnn+ 20n− ω)

≤ (ln lnn) · ln(21n)

≤ lnn+ (lnn) · ln lnn

= ln
(
n · ln

(n2

c

))
(11)

where the last equality holds by the definition (8).
From (10), (11) and the fact that f(d) is continuous, we derive that there exists some

d ∈ [ln lnn, lnn] such that ln f(d) = ln(n ln(n2/c)) holds. Consequently, the assumption
(2) holds. For such d, by (9), we have

np = Ω
(n ln lnn

lnn

)
, (12)
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which clearly satisfies the assumption (3), and G(n, p) is connected almost surely (c.f. [3]
pp.164).

Hence, both (i) and (ii) have been checked and the proof is finally completed. 2

Proof of Theorem 2. It can be proved similarly by noting the fact

diam(G(n, p))− 1 ≤ rvc(G(n, p)) < 11n/δ(G(n, p)). (13)

We leave the details to the interested readers.2
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