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Abstract: Structural constraints prevent the difference of two odd cubes ever equaling an 
even cube. This is illustrated from the row structure of the modular ring Z4. The critical 
structure factor is that the rows of integers, 2N , with 2|3 N , follow the triangular numbers, 
whereas 2|3 N/  rows follow the pentagonal numbers. This structural characteristic is the 
reason for the importance of primitive Pythagorean triples (in which either the smallest odd 
component or the even component always has a factor 3). 
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1. Introduction 
 
The key to the analysis of primitive Pythagorean triples (pPts) is that in the modular ring Z4 
(Table 1) the rows of the squares of the two odd components are compatible with the row 
of the square of the even component [6].  

The factor 3 is important. The row of an odd integer, 2N , characterised by 2|3 N , 
follows the triangular numbers [8,11], whereas 2|3 N/ follows the pentagonal numbers 
[3,9]. This intriguing integer-structure characteristic seems to be critical when the powers 
of the triples exceed the square. We note, in passing, the caution of Harkleroad: “If you 
look at some numbers, you may very well find Fibonacci numbers, or square numbers, or 
prime numbers, or any other favorite kind of number you have.  But unless you can also 
find a particular reason why numbers of a certain type should appear, you’re quite likely 
just turning up a coincidence” [4]. 

Since the structure of higher odd powers has the same form as the cube, cubes can 
be considered as representative of odd powers in general [5, 7]. The aim of this paper then  
is to provide examples of how the incompatible factor-structure of cubes prevents the sum 
of two cubes from equalling a cube. 
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f(r) 04r  14 1 +r  24 2 +r  34 3 +r  
Row 

Class 40  41  42  43  

0 0 1 2 3 
1 4 5 6 7 
2 8 9 10 11 
3 12 13 14 15 
4 16 17 18 19 
5 20 21 22 23 
6 24 25 26 27 
7 28 29 30 31 

Table 1: Rows of Z4 
 
2. The Incompatibility of the Rows of Cubic Triples 
 
Odd cubes belong to Classes 41  or 43 , but even cubes belong only to 40 (Table 1). Hence, 
if we assume that for the integers a, b, c, with a and c odd, and b even 
 

c3 = a3 + b3 (2.1)
then 41, ∈ca : 

011 41414 RRR ++′=+  (2.2)
and thus 

011 RRR =′− . (2.3) 
 
Observe that a, c must fall in the same class because 

( ) 2143414 3131 +−−=−−+ RRRR  (2.4)
or 

( ) 241434 1313 +−=−−+ RRRR  (2.5)

and Class 42  has no powers. 
  

When 43, ∈ca , 

033 43434 RRR ++′=+  (2.6)
so that 

033 RRR =′− . (2.7)
 
The rows of cubes are functions of the pentagonal numbers, or, when 3 is a factor of the 
cube, the triangular numbers (Table 2). 
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 When the cube is even the rows have the forms ( ) ( )342,142 31 ++ RR qq  or q2 , 
q = 1, 2 , 3, … R1 and R3 are the rows of the odd factors cubed and hence conform to the 
functions in Table 2.  For example, 63 = 23 × 27.  Thus, R0 = 2(27) (q = 1) with 
27 = 4R3 + 3, R3 = 6 (n = 0; f(n) no.6 in Table 2). 
 
(i) 3for,|3&|3 bacb /    
In this case, R1 is given by f(n) no.5 and R3 by f(n) no.6 in Table 2, so that 
 

No. Class 
of N Row of N n Row of cube Class 

of n 
R1 

parity

1 41  
N|3 /  

n2
3  even 3n(3n + 1)(6n+1) + 2

1 (3n) 42  
40  

odd 
even 

2 41  
N|3 /  

)13(2
1 −n  odd 3n(3n – 1))(6n – 1) + 2

1 (3n – 1) 41  
43  

odd 
even 

3 43  
N|3 /  

)23(2
1 −n  even 3n(3n – 1))(6n-1) + 2

1 (3n – 2) 42  
40  

even 
odd 

4 43  
N|3 /  

)13(2
1 −n  odd 3n(3n + 1))(6n+1) + 2

1 (3n – 1) 41  
43  

odd 
even 

5 41  
N|3  

)13(2
1 +n  odd 3(2+9n(n + 1))(2n+1) ) + 2

1 (3n+1) 41  
43  

even 
odd 

6 43  
N|3  

n2
3  even 3(2+9n(n + 1))(2n+1) + 2

1 (3n) 42  
40  

odd 
even 

 
Table 2: Rows of odd cubes (e: even; o: odd) 

 
 

( )
( )( )mf

RR
q

q

227

142 10

×=

+=
 

with 
( ) ( )( ) 42

123 3313324 ∈+−++= mmmmf , m odd, (2.8)
or 

( )
( )( )mf

RR
q

q

227

342 30

×=

+=
 

with 
( ) ( )( ) ,113324 42

123 ∈+++= mmmmf  m even.     (2.9) 
 
Some examples occur in Table 3. 
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b 6 12 18 24 30 36 42 48 54 60 66 72 78 

m 0 0 1 0 2 1 3 0 4 2 5 1 6 

q 2 4 1 7 1 4 1 8 1 4 1 7 3 
 

Table 3 
 
 

1R and 1R′  will equal the f(n) numbers 1 to 4 in Table 2 according to the Class of c 
and a, which, as noted above, must fall in the same class. However, a further restriction is 
that c, a must both fall in f(n) numbers 1 or 2 when in Class 41  or in f(n) numbers 3 or 4 
when in Class 43 . For instance, suppose c falls in f(n) (no.1) and a falls in f(n) (no.2), then 

2),(911 +′=′− nnfRR . (2.10)
 
so that 11|3 RR ′−/  and 0R  is incompatible. Possible compatible functions for 11 RR ′−  are 
listed in Table 4. 
 
 

Class of 
N 

f(n), f(n′) 
(Table 2) 11 RR ′−  n, n′ 

parity 

41  1 ( ) ( )( ){ }1'''34)'( 2
322

2
9 +++++− nnnnnnnn  even 

41  2 ( ) ( )( ){ }1'''34)'( 2
322

2
9 ++−++− nnnnnnnn  odd 

43  3 ( ) ( )( ){ }1'''34)'( 2
322

2
9 ++−++− nnnnnnnn  even 

43  4 ( ) ( )( ){ }1'''34)'( 2
322

2
9 +++++− nnnnnnnn  odd 

 
Table 4 

 
 

Since )( nn ′−  could have a factor )32( ×q  there could be a match with 0R  provided the 
f(m) of Equations (2.8) and (2.9) are compatible with 11 RR ′− . When 0R  has the odd factor 

in Class 41 , f(m) belongs to Class 43 , where as all the ( 11 RR ′− ) functions are in Class 41  
(Table 4). Thus we need only consider 0R  with the odd factor in Class 43 . 
 This yields Equation (2.9) for 0R  since ),()(2

9
11 nnfnnRR ′′−=′−  (Table 4). 

41),( ∈′nnf  and the row of ),( nnf ′  has a factor of 3.  Thus, for compatibility, the m of 
Equation (2.9) must have m|3 . 
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 In this case, f(m) would have a factor of at least 32, whereas  if nn ′,  are replaced by 
the appropriate class function from Table 2, then there is always a mismatch with the factor 
3 so that 0R  and ( 11 RR ′− ) are never compatible. Even so, the 272 ×q of 0R  must simulta-
neously match the ( )'2

9 nn− of ( 11 RR ′− ). 
 
(ii) .,|3&|3 bca /  
In this case the f(n) for the row of a will be given by numbers 5 or 6 of Table 2.  If we con-
sider Class 41  with R1 given by the f(n) of number 1 and 1R′  given by the f(n) of number 5 
in Table 2, then  

( )nnnnR 3)16)(13(3 2
1

1 +++= ,   n  even, (2.11)
 
and the row of a is given by 
 

( )( )( ) ( )13121923 2
1

1 +′++′+′′+=′ nnnnR ,   n  odd, (2.12)
so 

 ( ) ( )( ),13'99'3'2227 2
12233

11 −−+−+−=′− nnnnnnRR   (2.13)

n even, n′ odd. 

We take the odd factor for 41∈b  so that if we use f(n), number 1, in Table 2, then 
),1)(4(20 += mfR q   m even (2.14)

with 
)36(9)( 2

123 mmmmf ++= . 
Thus   

4
0 1

2
∈q

R . 

Since 1R  and 1R′  must have the same parity because R0 is even (from Table 2), then 

( ) ( ){ }4444 1,0,3,2, ∈′nn  

If we substitute 14,4 10 +=′= rnrn  into Equation (2.13), then we obtain 
 

)1),(4(2 0111 +=′− rrfRR  (2.15)

where 

23
32

27218)(1627),( 0
1

2
0

2
1

3
1

3
001 −














 +−+−−=

rrrrrrrrf . (2.16)

 
Even though we can take q = 1, and 01rr  even with 0|3 r , the row of  is not divisible by 3, 
whereas the row of 02

1 R  can be. 
 If we let  n = 4r2 + 2 and n′ = 4r3 + 3, then 
 

)1),(4(2 3211 +=′− rrfRR  (2.17)
where 
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( ) 221441169
4
112671)(489),( 32

2
3

2
2

3
3

3
232 −






 −+−+−= rrrrrrrrf . 

 

Thus, even though 4
11

1
)(2

1
∈

′− RR
, the row has no factor of 3, and so )( 11 RR ′−  is incom-

patible with R0. 
 If we take the odd factor of 40 3∈R , then by using f(n) number 3 in Table 2, we 
have 









+






 −+−= 31)9(

2
1275442 23

0 mmmR q  (2.18)

 

so that 4
0 3

2
∈q

R which is incompatible with )( 11 RR ′− . 

 
 
3. No Component has a Factor of 3 
 
If R0 has the odd factor in Class ,14   
then 

)14(2 10 += RR q  (3.1)
 
with R1 connected with f(n) number 2 in Table 2, 
 









+






 −+−= 1)19(

2
1275442 23

0 mmmR q ,  m odd. (3.2)

 

The row of  q
R
2

0  is even when 41∈m   and odd when 43∈m , but does not have 3 as a fac-

tor, whereas the rows of )( 112
1 RR ′−  have 3 as a factor (Table 4).  Again various combina-

tions never lead to compatibility between )( 11 RR ′−  and R0.  
 
These results can be compared with those for the square triple )( 222 bac =− . As shown pre-
viously [6], for a pPt )( 222 bac =−  either a or b always has 3 as a factor. Furthermore, all 
odd squares belong to ( )141 14 +r , unlike odd powers Nm which fall in the same class as N. 
 However, it is the unique row structure of integers with a factor of 3 that is the criti-
cal point.  That is, rows of N 2 with 3|N follow the triangular numbers in contrast to the 
rows of other odd integer squares which follow the pentagonal numbers [5]. 
 For 222 bac =− , 14 1 +∈ rc , 14 1 +′∈ ra , 04rb∈  
Thus 

011 rrr =′−  (3.3)
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Parity of 
Class of a2,c2 No. )( 11 rr ′−  

n n′ 

41  1 3(n – n′)(3(n + n′) + 1) even even 

41  2 3(n + n′)(3(n – n′) + 1) even odd 

41  3 3(n + n′)(3(n – n′) – 1) odd even 

41  4 3(n – n′)(3(n + n′) – 1) odd odd 

Table 5 
 
If neither a nor b has 3 as a factor, then the rows 011 ,, rrr ′  will follow the pentagonal numbers 
( ))13(2

1 ±nn . Thus possible f(n) for )( 11 rr ′−  are listed in Table 5, and for 0r  in Table 6.  As 

shown previously [5], even b can never be in Class 42 and 0r  does not have a factor 3 (Ta-
ble 6), and so solutions are not possible since 11|3 rr ′− . 

 
Class of b2 No. r0 

40  1 2q 

40  2 2q(12n(3n + 1) + 1) 

40  3 2q(12n(3n – 1) + 1) 
 

Table 6 
 

 
4.  Concluding Comments 
 
Topics for further research could be to investigate if other polynomials occur with other 
moduli under suitable divisibility non-divisibility conditions.  Relevant number theoretic 
ideas may be found in [2, 9, 10]. 
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