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Abstract: A complete demonstration of solutions of the above Diophantine equation is 
given when  p < q  are primes and α, β are positive integers. Among the several examples 
exhibited,  Example 3 provides a new solution containing eighty-five even numbers  xi  all 
of which are of the required form. Certain questions and modifications of the equation are 
also discussed. 
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In this paper we consider the Diophantine equation in integers 
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,   x1 < x2 <  … < xk (1) 

with  xi = pαqβ  when  p < q  are primes, and  α, β are positive integers.  
 

Two cases will be discussed. Case 1 when all values  xi  are  xi = pq,  and Case 2 when 
not all values  xi  are  xi = pq.   

In order to provide a more comprehensive demonstration of the title equation, we 
exhibit here Examples 1, 2  already obtained by the author in  [2, 5]. 
 
Case 1. All values  xi  in  (1) are  xi = pq (α = β = 1).  
The above restriction imposed on the values  xi  immediately implies the fact that  xi  ł  xj  
for  i  ≠  j.  However, the converse of this statement is false. For if xi  ł  xj  for  i  ≠  j  is true 
for all values  xi  in  (1), then all values  xi  need not be of the form  xi = pq. This is shown in  
[1, Example 4]. The solution of this case, namely  Example 1 is cited  in  [5], and is the best 
known result thus far. 
 
Example 1.   The 52 different numbers in Table 1. have the following two properties : 

(i) each number is a product of two distinct primes, and therefore no-one divides 
any other,  

(ii) the sum of their reciprocals is equal to 1. 
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6 10 14 15 21 22 26 33 34 35 38 

39 46 51 55 57 58 62 65 69 77 82 

87 91 93 95 106 119 122 123 133 155 159 

161 183 187 202 203 213 265 287 299 319 355 

453 497 505 583 671 1057 1313 1963    

 
Table 1. 

 
 
Remark 1.   The affirmative answer to  (1)  with the restriction that  xi ł  xj  for  i  ≠  j raises 
several questions. Some of these are mentioned in  [1, Questions 5, 9], and are respectively 
as follows: 
 

• Does  (1)  have a solution with integers  x1, x2,  … , xk  for large x1, which also 
satisfy  xi ł xj  for  i ≠ j ? 

• Does  (1)  have a solution with even integers  x1, x2, …, xk  which also satisfy  xi ł  xj 
for  i  ≠  j ? 

 
We mention here that the open Questions  5 and 9 in  [1]  are still unanswered. 
 
 
Case 2.   All values  xi  in  (1)  are  xi = pαqβ.  
Allan Johnson  [6]  found a solution of  (1)  using  k = 48  distinct integers all of which are 
of the form  xi = pαqβ.  The author  [2]  improved Johnson's result to  k = 25. The solution in  
[2]  is presented as  Example 2.  
 
Example 2.    The 25 different numbers  in Table 2. have the following two properties: 

(i) each number is of the form  pαqβ, 
(ii) the sum of their reciprocals is equal to 1. 

 
 

6 10 12 14 15 18 21 22 24 

26 28 33 35 36 39 48 52 56 

65 72 88 91 99 117 144   

 
Table 2. 
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We note that Example 2 is composed of odd and even numbers. This leads us to 
examine solutions of  (1) when all  xi  are odd, and when all  xi  are even numbers. It is 
mentioned  [6],  that the case of all  xi  are odd numbers cannot be applied to  (1). However, 
in Example 3, we exhibit a solution of  (1)  in which all  xi  are even numbers.  
  
Example 3. The eighty-five different numbers contained in (a1), (a2), (a3), (a4), (b), (c1), 
(c2) and (d) from Table 3 have the following two properties: 

(i) each number is even and of the form pαqβ, 
(ii) the sum of their reciprocals is equal to 1. 

 
Clearly this can be verified by means of a computer (L.C.M. =  417533276160), but it 

can also be done directly by observing the following. Consider the two sets of numbers: 
 

S  =  {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}, 
 

T  =  {3, 7, 32, 13, 5, 11, 31, 73}. 
      

The numbers in  S  are the first twelve powers of  2,  and the sets  S, T  are disjoint 
sets. Multiplying the twelve numbers in  S  by each of  3, 7, 32  and  13  in  T,  respectively 
results in (a1), (a2), (a3), (a4). The numbers in  (b)  are products of the first eight numbers in  
S  by 5.  Multiplying the first ten numbers in  S  by  11  and  31  in  T,  respectively yields 
(c1) and (c2).  Finally, the numbers in  (d)  are products of the first nine numbers in  S  by 
73.  

Due to the property of  S, T,  and to the form just described of the numbers in  (a1), 
(a2), (a3), (a4), (b), (c1), (c2) and (d), it is evident that property (i) follows. 

For (ii) observe that:  All the multiples appearing in Example 3 of a certain number  
N, where  N ∈ T occur in one and only one row of  (a1)  through  (d).  Computing the sum 
of the reciprocals in each row, we obtain a fraction, the numerator of which is also a 
multiple of  N.  After simplification, the new fraction will have a denominator which is a 
divisor of  4096.  This enables us to carry out the summation without a computer.   

The eight partial sums add up to  1.  
In the following  Remark 2 we apply some modifications to  (1).  

 
Remark 2.  Many problems are concerned with  (1),  and in particular when all  xi  are odd 
numbers, thus removing the restriction on  xi  =  pαqβ.  In this case, it is already known [3] 
that  k  must be an odd value. With fixed values  k,  fixed primes, more than two primes 
occur, and allowing certain exponents to be zero, it is established : 

(i) For odd values  xi,  it is shown  [3]  that the smallest possible value  k  is  k = 9, 
and for that value  k  (1)  has exactly five solutions with  xi3α·5·7·11  where α ≤ 3. 

(ii) It is easily verified that  (1)  has no solutions when  xi ∈ 3α5β. Therefore, when  k = 
11 and with the three smallest primes, namely  xi3α5β7γ,  it is known [4] that  (1)  
has exactly seventeen solutions. 
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