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Abstract
Simple functions were obtained for the rows of qulovers in the
modular ring Z,, wherein integerN is represented byN =4r, +i,

i=0123. These row functions are based on the row funstitor
squares. Whe8| N, the row of N> =3n(3n* 1) or when 3jl, the row
of N* =2+184n(n+1),n= 0123,....
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1. Introduction
Integer structure analysis with modular rings pdesi the tools for new perspectives on well-
known quantities and functions, such as infiniteesg integer powers, primitive Pythagorean
triples (pPts), and so on [4]. A pPt is a Pythagortiple &,y,2 such that, the greatest common
divisor of (,y,2 is unity [1]. For instance, a pPt such as

625=576 + 49 (1.1)

might not seem at first glance to have any comnamtofs. Howevers2501, [ Z,(Table 1).

That is, 625 = & 156 + 1. On the other hanB7600., and so 576 = & 144, whereast9[14,
with 49 = 4x 12 + 1. Thus, Equation (1.1) becomes

13 =12+ 1. (1.2)

Different relationships among pPts may be explaedhis basis, including Lehmer’s intriguing
result that.the fraction of primitive tripl@®p) with perimeter less thamis [3]
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lim M = In—2 =0.070230.
poe T

In the context of this paper we are more concemiéld the functions of the rows of squares of
integersN. When 3, the rows follow the triangular numbers, but wrghN , the rows follow

the pentagonal numbers [2,4]. The functions forrtves of squares can then be used to analyse
primes,p, by means of

p=4r +1=x"+y?

to develop a general equation for these primesadutar rings [5]. In this paper we extend the
functions to powers greater than 2.

F(r) 4r, 4r, +1 | 4r,+2 | 4r,+3
ROW[Class| o, L 2 | 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19
5 20 21 22 23
Table 1: Modular Ring,
Classof N | 3N row of N n row of N°
L No 3n even A(3n+1)
+(Bn-1) odd (3n-1)
3, No 1(@n-2) even 3(3n-1)
1(3n-) odd 3n(3n + 1)
L Yes 1@n+1) odd only | 2+9(n + 1)
3, Yes 3n evenonly | 2+8(n+ 1)

Table 2: rows of\?

2. Rowsof CubesinzZ,
Classe$:and3;contain the odd integers (Table 1). Wiem 4r, +1, N®Oltoo, and

for N = 4r, +3 andN*® [03,. This is in contrast to the squares which arelalnents of Clads.

Since
N*= NN (2.1)
we may use the row functions of the squares. Fstante, consided DLande N . Then with

N = 4(6K)+1, K =3n(3n+1) (2.2)
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and

N=4r; +1, (2.3)
then
N® = (24K +1)(4r, +1) (2.4)
soRy, the row ofN?, is given by
Ry = 24Kry + 6K + 1y, (2.5)
Whenn is even,
r,=3n,
whenn is odd,
r, =1(3n-1).

These functions are obtained by comparing the sqgiuarctions with the rows oN (Table 2).
Substituting in thé(n) for K andr; in Table 2 yields the results in Table 3.

Classof N Row of N n K Row of cube

1,3 N 3n even 1(3n+1) | 3n(3n+1)(6n+1)+2n

1(3n-1) odd 1(3n-1) | 3n(3n-1)(6n-1)+1(3n-1)
3,3 N 1(3n-2) even 1(3n-1) | 3n(3n-1)(6n-1)+1(3n-2)

1(3n-1) odd 1(3n+1) | 3n(3n+1)(6n+1)+1(3n-1)
L,3|N 1(3n+1) odd only - 32+9n(n+1))(2n+1)+1(3n+1)
3:,3|N 2n even only - 32+9n(n+1)(2n+1)+2n

Table 3:N° data
Since3.x34 €L, whenNE 3.,
N® = (24K +1)(4r, +3) (2.6)

which gives thd(n) in Table 3.
For 3N, the functions in Table 2 are substituted f&r &dr; andrs in Equation (2.5) and the
row of N in Equation (2.6) to give the functions in Table 3

3.Rowsof N°in Z,
Obviously all odd powers may be split ifiBN°N? ... N.For example,

NS :(NZ)ZN (3.2)
= (24K +1)* (4r, +1)
= (24K +1)2(4r, +3) (3.2)

Substitution of the values of the various quardifrem Table 2 gives thén) listed in Table 4.

4. Even Integers
Since all even integers may be put in the form
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M =2q (4.1)
whereq is odd ((4r, +Dor (4r,+3),r=0,1,2,3,...).
Thus,
M S - ZSqS

so that rows may be found using the above analysis.

Classof N | Row of N n K Row of N°
L,3]N 3n even | 1(3n+1) | 6n(3n+1)(6n+1)(6n(3n+1)+1)+2n
1(3n-1) odd | 1(3n-1) | 6n(3n-1)(6n-1)(6n(3n-1)+1)+1(3n-1)
3,,3|N | +(31-2) even | 1(3n-1) | 6n(3n-1)(6n-1)(6n(3n-1)+1)+1(3n-2)
1(3n-1) odd | (3n+1) | 6n(3n+1)(6n+1)(6N(3n+1)+1)+1(3n-1)
L,3IN | %(3n+1) | oddonly - 6(2+9n(n+1))(2n+1)(18n(n+1)+5)+1(3n+1)
3.,3|N gn [evenonly] - | 6(2+9n(n+1)[2n+1)18n(n+1)+5)+2n
Table 4:N° data

5. Final Comments
When analyzing higher powered analogs of Pythagairgales it should be useful to break down
the components into the classes and have funcfamnthe rows so that the powers are first
reduced to rather simple functionsmfas in [6].
The foregoing analysis may be readily extendegl/gn powers since

N2™ = N2N?2.... (5.1)
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