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Abstract

Let a⊕b = max(a, b) and a⊗b = a+b for a, b ∈ R and extend the pair of operations
to matrices and vectors in the same way as in linear algebra. The homogeneous two-
sided system in max-algebra is of the form A⊗ x = B ⊗ x. No polynomial method for
solving homogeneous system is known. In this paper, we consider homogeneous two-
sided linear systems in max-algebra in a special case. We show that it can be checked
in O(n3) time whether a given two-sided homogeneous system belongs to this special
case. Solvability can be decided in O(n3) time and in the positive case a solution can
be found in O(n3).

1 Introduction

Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R := R ∪ −∞. The component −∞ is
a neutral element for ⊕ and a null for ⊗. We will denote throughout this paper −∞ by ε
and for convenience we also denote by the same symbol any vector or matrix whose every
component is −∞.

Max-algebra is an analogue of linear algebra developed for the pair of operations ⊕ (plus)
and⊗ (times), extended to matrices and vectors. That is if A = (aij), B = (bij) and C = (cij)
are matrices of compatible sizes with entries from R, we write C = A ⊕ B if cij = aij ⊕ bij
for all i, j and C = A⊗B if cij =

∑
k
⊕aik ⊗ bkj = maxk(aik + bkj) for all i, j. Also, if α ∈ R

then α ⊗ A = (α ⊗ aij). Max-algebra has been studied by many authors and the reader is
referred to [11], [12], [18], [2], [5] or [1].

A system of the form
A⊗ x = B ⊗ x,

where A = (aij), B = (bij) ∈ Rm×n
, is called homogeneous two-sided max-linear system or

just two-sided max-linear system. General two-sided linear systems in max-algebra have been
investigated in several articles e.g [9, 13, 15, 25] and also [4]. A general solution method was
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presented in [25]. This method uses for its basic solution component, the max-plus closure
operation and solves a series of subsystems with decreasing maximum solution. Though
no complexity bound was presented for this method. An elimination method for solving
A ⊗ x = B ⊗ x was presented in [9]. It was also shown that the solution set is generated
by a finite number of vectors. In [15] a general iterative approach has been developed which
assumes that finite upper and lower bounds for all variables be given. The iterative method
makes it possible to find an approximation of the maximum solution to the given system,
which satisfies the given lower and upper bounds or to find out that no such solution exists.
A pseudopolynomial algorithm for solving A⊗x = B⊗y was presented in [15]. The algorithm
converges to a finite solution from any finite starting point whenever a finite solution exists.
This method has been generalized to the systems A1 ⊗ x1 = · · · = Ak ⊗ xk [23]. Also the
known convergence results are extended in this general settings to the case when the entries
of matrices are real. Our aim is to consider homogeneous max-linear system in one special
case. We show that if a system belongs to this special case solvability can be decided in
O(n3) time and in the positive case a solution can be found in O(n3).

2 Definitions and problem formulation

Given A,B ∈ Rm×n
, the homogeneous max-linear system is of the form

A⊗ x = B ⊗ x. (1)

Homogeneous max-linear systems always have a solution which is ε, this solution will be
called trivial and all others nontrivial. In what follows we will consider nontrivial solutions
only. When the two-sided max-linear system (1) is solvable we write (A,B) is solvable.
We will discuss (1) in a special case and present necessary and sufficient conditions for
the solvability of such systems. We also present a polynomial algorithm for checking this
condition. Recall that if A ∈ Rn×n then

(A⊗ x)i =
n∑

m=1

(aim + xm).

An ordered pair D = (N,F ) is called a digraph if N is a non-empty set (of nodes) and
F ⊆ N ×N (the set of arcs). A sequence π = (v1, . . . , vp) of nodes is called a path (in D) if
p = 1, or p > 1 and (vi, vi+1) ∈ F for all i = 1, . . . , p− 1. The node v1 is called the starting
node and vp the end node of π, respectively. The number p− 1 is called the length of p and
will be denoted by l(π). If there is a path in D with starting node t and end node u then
we say that u is reachable from t denoted by t → u. Thus t → t for any t ∈ N . A digraph
D is called strongly connected if t → u for all nodes t, u in D. A path (v1, . . . , vp) is called
a cycle if v1 = vp and p > 1 and it is called an elementary cycle if, moreover vi 6= vj for
i, j = 1, . . . , p− 1, i 6= j. The arcs (vi, vi+1) ∈ F for i = 1, . . . , p− 1 are called the arcs of the
cycle. We assume that n ≥ 1 is a given integer and denote by N = {1, . . . , n}. The digraph

associated with A = (aij) ∈ Rn×n
is

DA = (N, {(i, j); aij > ε}) .

The matrix A is called irreducible if DA is strongly connected and reducible otherwise.
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3 Max-algebraic eigenvector eigenvalue problem

The max-algebraic eigenvector-eigenvalue problem or just eigenproblem (EP) is the following:

Given A ∈ Rn×n
, find all λ ∈ R (eigenvalues) and x ∈ Rn

, x 6= ε (eigenvectors) such that

A⊗ x = λ⊗ x. (2)

The theory of max-algebraic eigenproblem is well known [11], [24],[21]. In this section we
will give an overview of some results which will be useful in the forthcoming sections.

The set of all eigenvalues and eigenvectors of A will be denoted by Λ(A) and V (A), re-
spectively. If π = (i1, . . . , ip) is a path in DA then the weight of π is w(π,A) = ai1i2 + ai2i3 +
· · ·+ aip−1ip if p > 1 and ε if p = 1. We denote by λ(A) the maximum cycle mean of A, that
is if DA has at least one cycle then

λ(A) = max
σ

µ(σ,A), (3)

where the maximisation is taken over all cycles in DA and

µ(σ,A) =
w(σ,A)

l(σ)
(4)

denotes the mean of the cycle σ = (i1, . . . , ik, i1). If DA is acyclic we set λ(A) = ε. We
denote

Λ(A) = {λ ∈ R;
(
∃x ∈ Rn − {ε}

)
A⊗ x = λ⊗ x}

V (A) = {x ∈ Rn − { ε};∃λ ∈ R,
A⊗ x = λ⊗ x}.

3.1 The eigenvalue

The eigenproblem may have up to n eigenvalues [8]. It is also known that if a matrix A
is irreducible then the maximum cycle mean of A is the unique eigenvalue of A. By this,
therefore we know that in our case the eigenvalue is unique since our matrix is of the form
A ∈ Rn×n and hence irreducible.

Theorem 3.1. [11]
Let A ∈ Rn×n. Then (2) admits a unique eigenvalue λ(A) given by

λ(A) = max
ai1i2 + · · ·+ aip−1ip + aipi1

p
(5)

where the maximum is taken over all tuples (i1, . . . , ip) for which the indices i1, i2, . . . , ip are
distinct, and p = 1, 2, . . . , n.

Various algorithms for finding λ(A) for a given A ∈ Rn×n
exist [19, 10, 16, 17] and [11].

The most efficient among them is Karp’s algorithm [19] of complexity bound O(n3). We will
now consider some properties of matrices when their maximum cycle mean is 0. A matrix
A ∈ Rn×n is called definite if λ(A) = 0.
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Proposition 3.1. [11]
Suppose A = (aij) ∈ Rn×n and λ(A) is the maximum cycle mean of A then the matrix
λ(A)−1 ⊗ A is definite.

Let α ∈ R then we have the following

A⊗ x = λ⊗ x
=⇒ (α⊗ A)⊗ x = (α⊗ λ)⊗ x

=⇒ V (α⊗ A) = V (A).

By this and also Proposition 3.1 it is therefore sufficient to show how to solve the eigen-
problem for definite matrix.

3.2 The eigenvectors

Let A ∈ Rn×n. Consider the following matrices obtained by taking powers of A:

A(2) = A⊗ A =

(a
(2)
ij ) =

(∑
k

⊕
aik ⊗ akj

)

=

(
max
k=1,...,n

(aik + akj)

)
,

and

A(p) = A⊗ A(p−1) =

(a
(p)
ij ) =

∑
kp−1

⊕
aik ⊗ a(p−1)

kj

=
∑

1≤k1,...,kp−1≤n

⊕
(aikp−1 ⊗ ...⊗ ak1j)

= max
1≤k1,...,kp−1

(aikp−1 + ...+ ak1j).

Recall that by DA we mean the digraph associated with A. Therefore, in DA we obtain
that aij is the weight of the path of length 1 from vi to vj. It can be observed that a

(2)
ij is

the weight of the longest path of length 2 from vi to vj. Also a
(p)
ij is the weight of the longest

path of length p from vi. The metric matrix or weak transitive closure of A is defined as

∆(A) = A⊕ A(2) ⊕ A(3) ⊕ ...

.

Theorem 3.2. [11]

Suppose A = (aij) ∈ Rn×n
is definite then

∆(A) = A⊕ A(2) ⊕ ...⊕ A(n).
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Note that if A is definite then ∆(A) can be found in O(n3) time using Floyd-Warshall
algorithm [22].

Theorem 3.3. [11]
If A = (aij) ∈ Rn×n, then λ = λ(A) is the unique eigenvalue of A and every column of
∆(λ−1 ⊗ A) with a zero diagonal element is an eigenvector of A.

Theorem 3.4. [11]
If N0 is the set of columns of ∆(λ−1 ⊗ A) with a zero diagonal element then the set of all
eigenvectors for (2) is

V (A) =
{∑⊕

α⊗ gi; gi ∈ N0, α ∈ R
}
.

4 Generalized max-algebraic eigenvector eigenvalue prob-

lem

The generalized max-algebraic eigenvector eigenvalue problem or just generalized eigenprob-

lem (GEP) is: Given A,B ∈ Rn×n
, find all λ ∈ R and x ∈ Rn

, x 6= ε such that

A⊗ x = λ⊗B ⊗ x. (6)

For the GEP we denote by λ and x the generalized eigenvalue and eigenvectors respec-
tively. Also we denote

Λ(A,B) = {λ ∈ R;
(
∃x ∈ Rn − {ε}

)
A⊗ x = λ⊗B ⊗ x}

V (A,B) = {x ∈ Rn − { ε};∃λ ∈ R,
A⊗ x = λ⊗B ⊗ x}.

The generalized eigenproblem has been analysed in [3] and [14]. A method for narrowing
the search for the generalized eigenvalues are presented in [6] In [14] a number of solvability
conditions for general matrices and also solution methods for GEP in some special cases
have been presented. We will now present the existence and uniqueness of eigenvalues for
GEP discussed in [3] in one special case. In what follows we assume that the matrices A
and B are finite. Recall that N = {1, . . . , n} and define

(c1(j, i), c2(j, i), . . . ) = c(j, i) = Aj −Bi,

the vector obtained by subtracting the ith column of B from the jth column of A for all
i, j ∈ N . Also we denote by ck(j, i) for k ∈ N the kth component of c(j, i).

Lemma 4.1. [3]
Let x ∈ V (A,B), i ∈ N and suppose that j, k ∈ N satisfy (A ⊗ x)i = aij + xj, (B ⊗ x)k =
bki + xi. Then ck(j, i) ≤ ci(j, i).
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Using Lemma 4.1 the following condition is defined as condition (T) for all i, j, k ∈ N
with k 6= i, k 6= j,

ck(j, i) ≥ ci(j, i). (7)

This condition is called strict (T) if the inequality (7) is strict [3].
Before discussing the uniqueness of generalized eigenvalues we define the following condi-

tion [3]: Strong (T) is a condition when strict (T) holds and (7) holds with strict inequality
also for j = k 6= i.

Theorem 4.1. [3]
If A,B satisfy strict (T) then V (A,B) 6= ∅ and also Λ(A,B) 6= ∅.

Theorem 4.2. [3]
Let A,B satisfy strong(T). Then |Λ(A,B)| = 1 and the unique generalized eigenvalue is

max

(
ai1i2 + · · ·+ aipi1

)
−
(
bi1i1 + · · ·+ aipip

)
p

(8)

where the maximum is taken over all tuples (i1, i2, . . . , ip) for which the indices i1, i2, . . . , ip
are distinct, and p = 1, 2, . . . , n.

Given A = (aij), B = (bij) ∈ Rn×n we denote by λ(A,B) the unique eigenvalue of (6).
Also, we define C = (cij) ∈ Rn×n as a matrix whose entry in the ith row and jth column
is aij ⊗ b−1

ii . That is C = (cij) = (aij ⊗ b−1
ii ). The eigenproblem associated with C is the

following
C ⊗ x = λ⊗ x. (9)

It follows from Theorem 3.3 that λ(C) is the unique eigenvalue of C. The following theorem
shows that a eigenvector and eigenvalue (that is λ 6= ε, x 6= ε) for GEP exists whenever a
strict (T) condition is satisfied.

Theorem 4.3.
If A,B satisfy strong(T) then V (A,B) = {x ∈ Rn

, x 6= ε;C ⊗ x = λ(A,B) ⊗ x} where
C = (cij) = (aij ⊗ b−1

ii ).

Proof.
Suppose that A and B satisfy strong (T). It follows from Theorem 4.1 that V (A,B) 6= ∅
and also Λ(A,B) 6= ∅. Let λ = λ(A,B) with x ∈ V (A,B). Now let k ∈ N and select i such
that (B ⊗ x)k = bki + xi. Similarly, select j such that (A ⊗ x)i = aij + xj. It follows from
Lemma 4.1 that ck(j, i) ≤ ci(j, i). This contradicts the assumption that A,B satisfy strong
(T) if i 6= k. Therefore we have i = k and

(B ⊗ x)k = bkk + xk, k ∈ N.

Consequently,
C ⊗ x = λ⊗ x, (10)

where C = (cij) ∈ Rn×n and cij = aij ⊗ b−1
ii . Since |Λ(A,B)| = 1 (Theorem 4.2) we have

λ = λ(A,B) and thus V (A,B) ⊆ {x ∈ Rn
, x 6= ε;C ⊗ x = λ(A,B) ⊗ x}. V (A,B) ⊇ {x ∈

Rn
, x 6= ε;C ⊗ x = λ(A,B)⊗ x} by similar argument.
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Corollary 4.1.
Let A,B satisfy strong(T). Then λ(A,B) = λ(C).

Proof.
The proof follows from Theorems 3.1 and 4.3.

5 Necessary solvability conditions for A⊗ x = B ⊗ x
In this section use the results presented in the previous section and present a solvability
condition for two-sided max-linear systems (1) where A and B are finite square matrices.
We also present an O(n3) algorithm for checking the solvability of such systems.

Due to Theorem 4.2 we know that GEP has a unique eigenvalue if the strong (T) condition
is satisfied. For this case also, Theorem 4.3 describes all the eigenvectors of GEP. Therefore
we have the following:

Corollary 5.1.
Let A,B satisfy strong(T). Then (A,B) is solvable if and only if C is definite.

Proof.
Suppose A,B satisfy strong(T). (A,B) solvable implies that GEP is solvable with λ = 0. But
unique generalized eigenvalue is denoted as λ(A,B) and given by (8). Therefore, λ(A,B) =
λ(C) = 0 (Corollary 4.1).
Similarly, A and B satisfy strong (T), λ(C) = 0 imply that |Λ(A,B)| = 1 and λ(A,B) =
λ(C) = 0 (Corollary 4.1). Consequently, (A,B) is solvable.

Solvability of (1) is equivalent to checking whether 0 ∈ Λ(A,B). For A,B satisfying
strong (T) the unique generalized eigenvalue is given by (8) we will present a polynomial
algorithm for checking whether given matrices A and B satisfy strong (T) condition. If
strong (T) is satisfied we obtain matrix C from A and B and in this case λ(C) is the unique
generalized eigenvalue (Corollary 4.1). Hence if A,B satisfy strong (T) it remains to check
whether λ(C) = 0. This can be done using Karp’s algorithm in O(n3) time applied to C. If
λ(C) = 0 then Theorem 4.3 describes all the eigenvectors satisfying (6) and thus all solutions
to the system A ⊗ x = B ⊗ x can be found by using the Floyd-Warshall algorithm applied
to C with computational complexity O(n3).

Theorem 5.1. Algorithm STRONG-(T) is correct and its computational complexity is
O(n3).

Proof. The correctness follows from the definition of strong (T). Since i, j ∈ N then the
main loop is repeated O(n3) times. The value c can be found in O(n) time. The inner
loop is repeated n times. Thus the computational complexity of Algorithm STRONG-(T) is
O(n3).
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Algorithm 1 STRONG-T (Strong (T) condition for the homogeneous two-sided systems)

Input: A = (aij), B = (bij) ∈ Rn×n

Output: flag = true if the condition is satisfied, flag = false otherwise

1. Set flag := true

2. for all i, j = 1, . . . , n do
begin
c := c(j, i) = Aj −Bi

for k = 1, . . . , n do
if k 6= i then

begin
if ck ≤ ci then flag := false
stop

end
end

6 An example

Consider the homogeneous two-sided system in which

A =

 4 2 1
3 −3 −3
2 4 −1

 and B =

 4 4 1
−3 4 −3
−3 1 5

 . (11)

By running Algorithm STRONG-T the system satisfies the strong (T) condition. The
run of the algorithm is summarised in the following table. The corresponding matrix C
matrix is

i, j c(j, i) = Aj −Bi k 6= i, k 6= j j = k 6= i

1, 1

 0
6
5

 k = 2, c2 > c1 and k = 3, c3 > c1 -

1, 2

 −2
0
7

 k = 3, c3 > c1 k = 2, c2 > c1

1, 3

 −3
0
2

 k = 2, c2 > c1 k = 3, c3 > c1

2, 1

 0
−1

1

 k = 3, c3 > c2 k = 1, c1 > c2

2, 2

 −2
−7

3

 k = 1, c1 > c2 and k = 3, c3 > c2 -
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i, j c(j, i) = Aj −Bi k 6= i, k 6= j j = k 6= i

2, 3

 −3
−7
−2

 k = 1, c1 > c2 k = 3, c3 > c2

3, 1

 3
6
−3

 k = 2, c2 > c3 k = 1, c1 > c3

3, 2

 1
0
−1

 k = 1, c1 > c3 k = 2, c2 > c3

3, 3

 0
0
−6

 k = 1, c1 > c3 and k = 2, c2 > c3 -

Table 1: Checking the strong (T) condition for matrices
A and B.

C =

 0 −2 −3
−1 −7 −7
−3 −1 −6

 . (12)

It can be identified straightforwardly, that C is definite since all the cycles are less than or
equals to zero and one is zero.

Since A and B satisfy the strong(T) condition and the matrix C is definite, we can
find all solutions to A ⊗ x = B ⊗ x by finding the eigenvectors corresponding C. Hence
we evaluate the transitive closure ∆(C). By Theorem 3.3 every column of ∆(C) with zero
diagonal element is an eigenvector of C. The eigenvector found is therefore a solution to the
homogeneous system with matrices defined in (11). We evaluate the transitive closure ∆(C)
as follows:

∆(C) = C ⊕ C2 ⊕ C3

=

 0 −2 −3
−1 −7 −7
−3 −1 −6

⊕
 0 −2 −3
−1 −3 −4
−2 −5 −6


⊕

 0 −2 −3
−1 −3 −4
−2 −4 −5


=

 0 −2 −3
−1 −3 −4
−2 −1 −5

 = (gij).

13



Since g11 = 0, the first column is an eigenvector of C and hence a solution to A⊗x = B⊗x.
Thus, we conclude that all solutions to the homogeneous two-sided system A ⊗ x = B ⊗ x
are multiples of x = (0, −1, −2)T .
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[21] I. V. Romanovskĭl, Optimization of stationary control of discrete deterministic process
in dynamic programming, Kibernetika 3(2): 66-78 (1967).

[22] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization-Algorithms and Com-
plexity , Dover, New York (1998).

[23] S. Sergeev, Alternating method for homogeneous systems of equations over max-algebra,
School of Mathematics pre-print, University of Birmingham, 18, 2008.

[24] N. N. Vorobyov, Extremal algebra of positive matrices, Elektronische Datenverarbeitung
und Kybernetik 3 (1967) 39-71 (in Russian).

[25] E. A. Walkup, G. Boriello, A general linear max-plus solution technique, in: Gunawar-
dena( Ed.), Idempotency, Cambridge, (1988) 406-415.

15


