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1. The Euler minimum function is defined by

E(n) = min{k ≥ 1 : n|ϕ(k)} (1)

It was introduced by P. Moree and H. Roskam [5]; and independently

by J. Sándor [7], as a particular case of the more general function

FA
f (n) = min{k ∈ A : n|f(k)} (A ⊂ N∗), (2)

where f : N∗ → N∗ is a given function, and A is a given set of positive

integers. For A = N∗, f = ϕ (Euler’s totient), one obtains the function

E given by (1) (denoted also as Fϕ in [7]). Since by Dirichlet’s theorem

on arithmetical progression, there exists a ≥ 1 such that k = an + 1 =

prime, by ϕ(k) = an:̇n, so E(n) is well defined.

We note that for A = N∗, f(k) = k! one reobtains the Smarandache

function

S(n) = min{k ≥ 1 : n|k!}, (3)

while for A = P = {2, 3, 5, . . . } = set of all primes, f(k) = k!, (2) gives

a new function, denoted by us as P (n):

P (n) = min{k ∈ P : n|k!} (4)
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We note that this function should not be confused with the greatest

prime divisor of n (denoted also sometimes by P (n)). For properties of

this function, see [6], [7].

There is a dual of (2) (see [7]), namely

GA
g (n) = max{k ∈ A : g(k)|n}, (5)

where g : N∗ → N∗, A ⊂ N∗ are given, if this is well defined. For A = N∗,
g(k) = k!, this has been denoted by us by S∗(n), and called as the dual

of the Smarandache function:

S∗(n) = max{k ≥ 1 : k!|n} (6)

For properties of this function, see [6]. See also F. Luca [4], where a

conjecture of the author has been proved, and M. Le [3] for a recent new

proof. See also K. Atanassov [1].

For A = N∗, g(k) = ϕ(k) one obtains the dual E∗(n) of the Euler

minimum function, which we shall call as the Euler maximum func-

tion:

E∗(n) = max{k ≥ 1 : ϕ(k)|n} (7)

Since for k > 6, ϕ(k) >
√

k, clearly k < n2, so E∗(n) ≤ n2 < ∞.

Generally, for A = N∗, let us write simply FA
f (n) = Ff (n), GA

g (n) =

Gf (n).

2. First we prove the following property of the Euler minimum func-

tion:

Theorem 1. If pi (i = 1, r) are distinct primes, and αi ≥ 1 are

integers, then

max{E(pαi
i ) : i = 1, r} ≤ E

(
r∏

i=1

pαi
i

)
≤ [E(pα1

1 ), . . . , E(pαr
r )], (8)

where [, . . . , ] denotes l.c.m.
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Proof. For simplicity we shall prove (8) for r = 2. Let pα, qβ be

distinct prime powers. Then E(pαqβ) = min{k ≥ 1 : pαqβ|ϕ(k)} = k0, so

pαqβ|ϕ(k0), which is equivalent to pα|ϕ(k0), qβ|ϕ(k0), thus k0 ≥ E(pα),

k0 ≥ E(qβ), implying E(pαqβ) ≥ max{E(pα), E(qβ)}. It is immediate

that the same proof applies to E
(∏

pα
)
≥ max{E(pα)}, where pα are

distinct prime powers. Therefore, the left side of (8) follows.

Now, let E(pα) = k1, E(qβ) = k2, implying pα|ϕ(k1), qβ|ϕ(k2). Let

[k1, k2] = g. Since k1|g, one has ϕ(k1)|ϕ(g) (by a known property of

the function ϕ). Similarly, since k2|g, one can write ϕ(k2)|ϕ(g). Thus

pα|ϕ(k1)|ϕ(g) and qβ|ϕ(k2)|ϕ(g), yielding pαqβ|ϕ(g). By the definition

(1) this gives g ≥ E(pαqβ), i.e. [E(pα), E(qβ)] ≥ E(pαqβ), so the right

side of (8) for r = 2 is proved. The general case follows exactly the same

lines.

Remark 1. The above proof shows that the left side of (8) holds true

for any function f (for which Ff is well defined), so we get

max{Ff (p
αi
i ) : i = 1, r} ≤ Ff

(
r∏

i=1

pαi
i

)
(9)

For the right side of (8), with the same proof the following is valid: if

f has the property

a|b ⇒ f(a)|f(b) (a, b ≥ 1), (10)

then

Ff

(
r∏

i=1

pαi
i

)
≤ [Ff (p

α1
1 ), . . . , Ff (p

αr
r )] (11)

Now, if one replaces (10) with a stronger property, then a better result

will be true:

Theorem 2. Assume that f satisfies the following property

a ≤ b ⇒ f(a)|f(b) (a, b ≥ 1) (12)
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Then

Ff

(
r∏

i=1

pαi
i

)
= max{Ff (p

αi
i ) : i = 1, r} (13)

Proof. By taking into account of (9), one needs only to show that

the reverse inequality is true. For simplicity, let us take again r = 2. Let

Ff (p
α) = m, Ff (q

β) = n, with m ≤ n. Then the definition (2) of Ff im-

plies that pα|f(m), qβ|f(n). By (12) one has f(m)|f(n), so pα|f(m)|f(n).

We have pα|f(n), qβ|f(n), so pαqβ|f(n). But this implies n ≥ Ff (p
αqβ),

i.e. max{Ff (p
α), Ff (q

β)} ≥ Ff (p
αqβ). The general case follows exactly

the same lines.

Remark 2. If (a, b) = 1, by writing a =
r∏

i=1

pαi
i , b =

s∏
j=1

q
βj

j , (pi, qj) =

1, it follows that

Ff (ab) = max{E(pαi
i ), E(q

βj

j ) : i = 1, r, j = 1, s} =

= max{max{E(pαi
i ) : i = 1, r}, max{E(q

βj

j ) : j = 1, s}} =

= max{Ff (a), Ff (b)},

so:

Ff (ab) = max{Ff (a), Ff (b)} for (a, b) = 1 (14)

When f(n) = n!, then clearly (12) is true, so (14) gives:

S(ab) = max{S(a), S(b)} for (a, b) = 1, (15)

discovered by F. Smarandache [9].

3. The Euler minimum function must be studied essentially (by The-

orem 1) for prime powers pα. For values of E(p), E(p2), etc., see [5]. On

the other hand, for each prime p ≥ 3 one has

E(p− 1) = p (16)
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Indeed, if (p − 1)|ϕ(k), then p − 1 ≤ ϕ(k). Since ϕ(k) ≤ k − 1 for

k ≥ 3, one has p ≤ k. Now k = p gives ϕ(p) = p− 1, giving (16).

The values of the Euler maximum function E∗ given by (7) however

are even difficult to calculate in some cases. This function doesn’t seem

to have been studied up to now.

Clearly E∗(1) = 2 since ϕ(1) = 1, ϕ(2) = 1. One has E∗(2) = 6 since

ϕ(6) = 2, 2|2, and it is well-known that ϕ(n) ≥ 4 for n ≥ 7. Now let

p ≥ 3 be a prime. Since ϕ(k)|p implies ϕ(k) = 1 or ϕ(k) = p, for p ≥ 3

the last equality is impossible for ϕ(k) is even for all k ≥ 3, we can have

only ϕ(k) = 1 and kmax = 2. Actually since for k ≥ 3, ϕ(k) is even,

ϕ(k)|n is impossible for n = odd, so remains k ≤ 2, and kmax = 2. We

have proved:

Theorem 3. One has E∗(1) = 2, E∗(p) =

{
6, if p = 2

2, if p ≥ 3
for all

primes p; and E∗(n) = 2 for all n ≥ 1 odd. For all n ≥ 2 one has

E∗(n) ≥ 2. (17)

The last inequality is a consequence of ϕ(2) = 1 and the definition

(7).

The value 2 is taken infinitely often, but the same is true for the value

6:

Theorem 4. For all α ≥ 1 one has

E∗(2 · 7α) = 6 (18)

Proof. If ϕ(k)|(2 · 7α), then assuming k ≥ 3, as ϕ(k) is even, we can

only have ϕ(k) = 2 or ϕ(k) = 2 ·7a where 1 ≤ a ≤ α. Now, A. Schinzel [8]

has shown that the equation ϕ(x) = 2 · 7a is not solvable for any a ≥ 1.

Thus, it remains ϕ(k) = 2 and the maximal value of k ≥ 3 is k = 6. This

finishes the proof of (18).
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Remark. One has similarly E∗(2 · 52α) = 6 for any α ≥ 1. (19)

The function E∗ can take greater values, too; the values at powers of

2 is shown by the following theorem:

Theorem 5. E∗(2
m) = k, where k is the greatest number which can

be written as k = 2αp1 . . . pr, with p1 = 22α1 +1, . . . , pr = 22αr
+1 distinct

Fermat primes, and where α = a+1−(2k1+· · ·+2kr), with k1, . . . , kr ≥ 0,

0 ≤ a ≤ m. (20)

Proof. Since ϕ(k)|2m, clearly ϕ(k) = 2a, where 0 ≤ a ≤ m. Now

let k = 2αpα1
1 . . . pαr

r with p1, . . . , pr distinct odd primes. Since ϕ(k) =

2α−1pα1−1
1 . . . pαr−1

r (p1− 1) . . . (pr− 1) = 2a, we must have α1− 1 = · · · =
αr−1 = 0 and p1−1 = 2a1 , . . . , pr−1 = 2ar with α−1+a1+ · · ·+ar = a.

This gives p1 = 2a1 +1, . . . , pr = 2ar +1. Since p1 is prime, it is well-known

that it is a Fermat prime, so a1 = 2k1 , etc., and the theorem follows.

Remark 3. For m = 2 we get α ≤ 3 − (2k1 + · · · + 2kr), so with

k1 = 0 (when p1 = 3), we get k = 22 · 3 = 12. Another value would be

k = 2 · 5 = 10, so we get

E∗(4) = 12

Similarly, for m = 3,

E∗(8) = 30

If can be shown also that

E∗(16) = 60, E∗(32) = 120, E∗(64) = 240, E∗(128) = 510, etc.

However, since the structure (or the cardinality) of the Fermat primes

is not well-known, there are problems also with the calculation of great

values of E∗(2
m).

The function E∗(n) can take arbitrarily large values, since one has:

Theorem 6. For all m ≥ 1 the following inequality is true:

E∗(m!) ≥ (m!)2

ϕ(m!)
(21)
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Proof. It is known (see e.g. [2]) that the equation

ϕ(x) = m! (22)

admits the solution x = (m!)2/ϕ(m!). Now, since ϕ(x) = m!|m!, clearly

E∗(m!) ≥ x, giving inequality (21).

Corollary. limm→∞
E∗(m!)

m!
= +∞ (23)

Proof. Indeed, it is well-known (see e.g. [10]) that
m!

ϕ(m!)
→ ∞ as

m →∞. By (21), this implies (23).
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