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1. The Euler minimum function is defined by
E(n) =min{k > 1: n|e(k)} (1)

It was introduced by P. Moree and H. Roskam [5]; and independently

by J. Séndor [7], as a particular case of the more general function
Ff(n) =min{k € A: n|f(k)} (ACN), (2)

where f : N* — N* is a given function, and A is a given set of positive
integers. For A = N*| f = ¢ (Euler’s totient), one obtains the function
E given by (1) (denoted also as F, in [7]). Since by Dirichlet’s theorem
on arithmetical progression, there exists a > 1 such that k = an + 1 =
prime, by ¢(k) = anin, so E(n) is well defined.

We note that for A = N*, f(k) = k! one reobtains the Smarandache
function

S(n) = min{k > 1: nlk!}, (3)
while for A = P = {2,3,5,...} = set of all primes, f(k) = k!, (2) gives

a new function, denoted by us as P(n):
P(n) = min{k € P: n|k!} (4)
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We note that this function should not be confused with the greatest
prime divisor of n (denoted also sometimes by P(n)). For properties of
this function, see [6], [7].

There is a dual of (2) (see [7]), namely

GA(n) = max{k € A: g(k)[n}, (5)

where g : N* — N*, A C N* are given, if this is well defined. For A = N*,
g(k) = E!, this has been denoted by us by S.(n), and called as the dual

of the Smarandache function:
Si(n) =max{k >1: klln} (6)

For properties of this function, see [6]. See also F. Luca [4], where a
conjecture of the author has been proved, and M. Le [3] for a recent new
proof. See also K. Atanassov [1].

For A = N*, g(k) = (k) one obtains the dual E.(n) of the Euler
minimum function, which we shall call as the Euler maximum func-
tion:

E.(n) =max{k >1: o(k)|n} (7)

Since for k > 6, p(k) > Vk, clearly k < n? so F,(n) <n? < co.

Generally, for A = N*, let us write simply Fj!(n) = Ff(n), G2 (n) =
Gr(n).

2. First we prove the following property of the Euler minimum func-
tion:

Theorem 1. If p; (i = 1,7) are distinct primes, and «; > 1 are

integers, then

max{E(pi"): i=1,r} <E (Hzﬁ”) <[E®),...,El@)], (8

where [,...,| denotes l.c.m.



Proof. For simplicity we shall prove (8) for r = 2. Let p®,¢° be
distinct prime powers. Then E(p®¢®) = min{k > 1: p®¢®|p(k)} = ko, so
p°q°|¢(ko), which is equivalent to p®|p(ko), ¢°|¢(ko), thus ko > E(p®),
ko > E(q¢%), implying E(p®¢®) > max{FE(p%), E(¢°)}. It is immediate
that the same proof applies to F (H pa> > max{F(p*)}, where p* are
distinct prime powers. Therefore, the left side of (8) follows.

Now, let E(p®) = ki, E(¢°) = ko, implying p®|o(k1), ¢°|p(ks). Let
[k1,ks] = g. Since kq|g, one has ¢(k;)|¢(g) (by a known property of
the function ¢). Similarly, since ks|g, one can write ¢(k2)|p(g). Thus
ple(k1)lp(g) and ¢°|p(k2)lp(g), yvielding p®g°lp(g). By the definition
(1) this gives g > E(p*¢?), i.e. [E(p®), E(¢°)] > E(p“q?), so the right
side of (8) for r = 2 is proved. The general case follows exactly the same
lines.

Remark 1. The above proof shows that the left side of (8) holds true
for any function f (for which Fy is well defined), so we get

mw@@%zhﬁﬂﬁﬂ<ﬂﬁ) (9)

For the right side of (8), with the same proof the following is valid: if
f has the property

alb = f(a)|f(b) (a,b>1), (10)
then )
E{Hﬁ)smwmmfmw1 (1)

Now, if one replaces (10) with a stronger property, then a better result
will be true:

Theorem 2. Assume that f satisfies the following property

a<b = fla)f(b) (a,b=1) (12)
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Then
Fy (pr”) = max{F;(p{"): i=1,r} (13)
i=1

Proof. By taking into account of (9), one needs only to show that
the reverse inequality is true. For simplicity, let us take again r = 2. Let
F¢(p®) = m, F;(¢°) = n, with m < n. Then the definition (2) of F} im-
plies that p®|f(m), ¢°|f(n). By (12) one has f(m)|f(n), so p®|f(m)|f(n).
We have p®|f(n), ¢°|f(n), so p“¢°|f(n). But this implies n > F;(p*q°),
i.e. max{F(p®), F;(¢°)} > F(p™q®). The general case follows exactly

the same lines.
S

Remark 2. If (a,b) = 1, by writing a = Hp?i, b= quj, (pivq;) =
i=1 j=1
1, it follows that

Fy(ab) = maX{E(pf"'),E(qu) ci=1r, j=1,s}=
s {max{EG) i = T} max{B() : J = T3} =

= maX{Ff<Cl), Ff<b)}7

F¢(ab) = max{F¢(a), F¢(b)} for (a,b) =1 (14)

When f(n) = nl, then clearly (12) is true, so (14) gives:
S(ab) = max{S(a),S(b)} for (a,b) =1, (15)

discovered by F. Smarandache [9].
3. The Euler minimum function must be studied essentially (by The-
orem 1) for prime powers p®. For values of E(p), E(p?), etc., see [5]. On

the other hand, for each prime p > 3 one has

E(p—1)=p (16)
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Indeed, if (p — 1)|¢(k), then p — 1 < ¢(k). Since (k) < k — 1 for
k > 3, one has p < k. Now k = p gives ¢(p) = p — 1, giving (16).

The values of the Euler maximum function E, given by (7) however
are even difficult to calculate in some cases. This function doesn’t seem
to have been studied up to now.

Clearly E,(1) = 2 since p(1) =1, ¢(2) = 1. One has E,(2) = 6 since
©(6) = 2, 2|2, and it is well-known that ¢(n) > 4 for n > 7. Now let
p > 3 be a prime. Since ¢(k)|p implies (k) = 1 or (k) = p, for p > 3
the last equality is impossible for ¢(k) is even for all £ > 3, we can have
only ¢(k) = 1 and kpee = 2. Actually since for & > 3, (k) is even,
@w(k)|n is impossible for n = odd, so remains k < 2, and k0, = 2. We

have proved:

2, if p=3
primes p; and FE.(n) = 2 for all n > 1 odd. For all n > 2 one has
E.(n) > 2. (17)
The last inequality is a consequence of p(2) = 1 and the definition
(7).

The value 2 is taken infinitely often, but the same is true for the value

6, 1 =2
Theorem 3. One has E.(1) = 2, E.(p) = { oy for all

Theorem 4. For all a > 1 one has

E.(2-7%) =6 (18)

Proof. If o(k)|(2-7%), then assuming k > 3, as ¢(k) is even, we can
only have p(k) = 2 or p(k) = 2-7% where 1 < a < a. Now, A. Schinzel [8]
has shown that the equation ¢(x) = 2 -7 is not solvable for any a > 1.
Thus, it remains ¢(k) = 2 and the maximal value of k > 3 is k = 6. This
finishes the proof of (18).



Remark. One has similarly F,(2-5%%) = 6 for any a > 1. (19)

The function E, can take greater values, too; the values at powers of
2 is shown by the following theorem:

Theorem 5. E,(2™) = k, where k is the greatest number which can
be written as k = 2%p; ... p,, with p; = 22" +1, ..., p, = 27 +1 distinct
Fermat primes, and where a = a+1—(2M 4 -+25) with ky, ... k. >0,
0<a<m. (20)

Proof. Since p(k)|2™, clearly ¢(k) = 2%, where 0 < a < m. Now
let & = 2%p1* ... p% with pq,...,p, distinct odd primes. Since p(k) =
20 tp Tt per iy —1) ... (pr — 1) = 2%, we must have oy — 1= -+ =
a,—1l=0andp,—1=2 ... p,—1 =2 witha—1+a;+---+a, = a.
This gives p1 = 2141, ..., p, = 2% +1. Since p; is prime, it is well-known
that it is a Fermat prime, so a; = 2", etc., and the theorem follows.

Remark 3. For m = 2 we get a < 3 — (28 + ... 4+ 2, so with
ki = 0 (when p; = 3), we get k = 22 - 3 = 12. Another value would be
k=2-5=10, so we get

E.(4) = 12

Similarly, for m = 3,
If can be shown also that

E,(16) =60, E,(32) =120, E,(64) =240, E,(128) =510, ctc.

However, since the structure (or the cardinality) of the Fermat primes
is not well-known, there are problems also with the calculation of great
values of F,(2™).

The function E,(n) can take arbitrarily large values, since one has:

Theorem 6. For all m > 1 the following inequality is true:

E,(m!) > (m!)* 21
(ml) = 0 21)




Proof. It is known (see e.g. [2]) that the equation

o(x) = m! (22)

admits the solution x = (m!)?/p(m!). Now, since p(x) = m!|m!, clearly

E.(m!) > z, giving inequality (21).

E.(m!
Corollary. lim,, . (—T'n) = +o0 (23)
m!
m!

p(m!)

Proof. Indeed, it is well-known (see e.g. [10]) that — 00 as

m — o0. By (21), this implies (23).

References

[1] K. T. Atanassov, Remark on Jozsef Sandor and Florian Luca’s the-

orem, C. R. Acad. Bulg. Sci. 55(2002), no. 10, 9-14.
[2] P. Erdos, Amer. Math. Monthly 58(1951), p. 98.

[3] M. Le, A conjecture concerning the Smarandache dual function,
Smarandache Notion J. 14(2004), 153-155.

[4] F. Luca, On a divisibility property involving factorials, C. R. Acad.
Bulg. Sci. 53(2000), no. 6, 35-38.

[5] P. Moree and H. Roskam, On an arithmetical function related to
FEuler’s totient and the discriminantor, Fib. Quart. 33(1995), 332-
340.

[6] J. Sandor, On certain generalizations of the Smarandache function,
Smarandache Notions J. 11(2000), no. 1-3, 202-212.



[7] J. Sandor, On certain generalizations of the Smarandache function,
Notes Number Theory Discr. Math. 5(1999), no. 2, 41-51.

[8] A. Schinzel, Sur l’équation p(x) = m, Elem. Math. 11(1956), 75-78.

[9] F. Smarandache, A function in the number theory, An. Univ.
Timigoara, Ser. Mat., 38(1980), 79-88.

[10] J. Sandor, On walues of arithmetical functions at factorials, 1,
Smarandache Notions J., 10(1999), 87-94.



