NNTDM 15 (2009), 3, 1-8

On the Euler minimum and maximum functions

József Sándor Babeş-Bolyai University of Cluj, Romania

1. The **Euler minimum function** is defined by

$$E(n) = \min\{k \ge 1 : n | \varphi(k)\}$$
(1)

It was introduced by P. Moree and H. Roskam [5]; and independently by J. Sándor [7], as a particular case of the more general function

$$F_f^A(n) = \min\{k \in A : n | f(k)\} \quad (A \subset \mathbb{N}^*),$$
(2)

where $f : \mathbb{N}^* \to \mathbb{N}^*$ is a given function, and A is a given set of positive integers. For $A = \mathbb{N}^*$, $f = \varphi$ (Euler's totient), one obtains the function E given by (1) (denoted also as F_{φ} in [7]). Since by Dirichlet's theorem on arithmetical progression, there exists $a \ge 1$ such that k = an + 1 =prime, by $\varphi(k) = an!n$, so E(n) is well defined.

We note that for $A = \mathbb{N}^*, \ f(k) = k!$ one reobtains the Smarandache function

$$S(n) = \min\{k \ge 1 : n|k!\},$$
(3)

while for $A = P = \{2, 3, 5, ...\}$ = set of all primes, f(k) = k!, (2) gives a new function, denoted by us as P(n):

$$P(n) = \min\{k \in P : n|k!\}$$

$$\tag{4}$$

We note that this function should not be confused with the greatest prime divisor of n (denoted also sometimes by P(n)). For properties of this function, see [6], [7].

There is a **dual** of (2) (see [7]), namely

$$G_q^A(n) = \max\{k \in A : g(k)|n\},\tag{5}$$

where $g: \mathbb{N}^* \to \mathbb{N}^*$, $A \subset \mathbb{N}^*$ are given, if this is well defined. For $A = \mathbb{N}^*$, g(k) = k!, this has been denoted by us by $S_*(n)$, and called as the dual of the Smarandache function:

$$S_*(n) = \max\{k \ge 1 : k! | n\}$$
(6)

For properties of this function, see [6]. See also F. Luca [4], where a conjecture of the author has been proved, and M. Le [3] for a recent new proof. See also K. Atanassov [1].

For $A = \mathbb{N}^*$, $g(k) = \varphi(k)$ one obtains the dual $E_*(n)$ of the Euler minimum function, which we shall call as the **Euler maximum func-**tion:

$$E_*(n) = \max\{k \ge 1 : \varphi(k)|n\}$$
(7)

Since for k > 6, $\varphi(k) > \sqrt{k}$, clearly $k < n^2$, so $E_*(n) \le n^2 < \infty$.

Generally, for $A = \mathbb{N}^*$, let us write simply $F_f^A(n) = F_f(n), \ G_g^A(n) = G_f(n).$

2. First we prove the following property of the Euler minimum function:

Theorem 1. If p_i $(i = \overline{1, r})$ are distinct primes, and $\alpha_i \ge 1$ are integers, then

$$\max\{E(p_i^{\alpha_i}): i = \overline{1, r}\} \le E\left(\prod_{i=1}^r p_i^{\alpha_i}\right) \le [E(p_1^{\alpha_1}), \dots, E(p_r^{\alpha_r})], \quad (8)$$

where $[, \ldots,]$ denotes l.c.m.

Proof. For simplicity we shall prove (8) for r = 2. Let p^{α}, q^{β} be distinct prime powers. Then $E(p^{\alpha}q^{\beta}) = \min\{k \ge 1 : p^{\alpha}q^{\beta}|\varphi(k)\} = k_0$, so $p^{\alpha}q^{\beta}|\varphi(k_0)$, which is equivalent to $p^{\alpha}|\varphi(k_0), q^{\beta}|\varphi(k_0)$, thus $k_0 \ge E(p^{\alpha})$, $k_0 \ge E(q^{\beta})$, implying $E(p^{\alpha}q^{\beta}) \ge \max\{E(p^{\alpha}), E(q^{\beta})\}$. It is immediate that the same proof applies to $E\left(\prod p^{\alpha}\right) \ge \max\{E(p^{\alpha})\}$, where p^{α} are distinct prime powers. Therefore, the left side of (8) follows.

Now, let $E(p^{\alpha}) = k_1$, $E(q^{\beta}) = k_2$, implying $p^{\alpha}|\varphi(k_1), q^{\beta}|\varphi(k_2)$. Let $[k_1, k_2] = g$. Since $k_1|g$, one has $\varphi(k_1)|\varphi(g)$ (by a known property of the function φ). Similarly, since $k_2|g$, one can write $\varphi(k_2)|\varphi(g)$. Thus $p^{\alpha}|\varphi(k_1)|\varphi(g)$ and $q^{\beta}|\varphi(k_2)|\varphi(g)$, yielding $p^{\alpha}q^{\beta}|\varphi(g)$. By the definition (1) this gives $g \geq E(p^{\alpha}q^{\beta})$, i.e. $[E(p^{\alpha}), E(q^{\beta})] \geq E(p^{\alpha}q^{\beta})$, so the right side of (8) for r = 2 is proved. The general case follows exactly the same lines.

Remark 1. The above proof shows that the left side of (8) holds true for any function f (for which F_f is well defined), so we get

$$\max\{F_f(p_i^{\alpha_i}): \ i = \overline{1, r}\} \le F_f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) \tag{9}$$

For the right side of (8), with the same proof the following is valid: if f has the property

$$a|b \Rightarrow f(a)|f(b) \quad (a,b \ge 1),$$
 (10)

then

$$F_f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) \le [F_f(p_1^{\alpha_1}), \dots, F_f(p_r^{\alpha_r})]$$
(11)

Now, if one replaces (10) with a stronger property, then a better result will be true:

Theorem 2. Assume that f satisfies the following property

$$a \le b \Rightarrow f(a)|f(b) \quad (a, b \ge 1)$$
 (12)

Then

$$F_f\left(\prod_{i=1}^r p_i^{\alpha_i}\right) = \max\{F_f(p_i^{\alpha_i}): \ i = \overline{1, r}\}$$
(13)

Proof. By taking into account of (9), one needs only to show that the reverse inequality is true. For simplicity, let us take again r = 2. Let $F_f(p^{\alpha}) = m$, $F_f(q^{\beta}) = n$, with $m \leq n$. Then the definition (2) of F_f implies that $p^{\alpha}|f(m), q^{\beta}|f(n)$. By (12) one has f(m)|f(n), so $p^{\alpha}|f(m)|f(n)$. We have $p^{\alpha}|f(n), q^{\beta}|f(n)$, so $p^{\alpha}q^{\beta}|f(n)$. But this implies $n \geq F_f(p^{\alpha}q^{\beta})$, i.e. $\max\{F_f(p^{\alpha}), F_f(q^{\beta})\} \geq F_f(p^{\alpha}q^{\beta})$. The general case follows exactly the same lines.

Remark 2. If (a, b) = 1, by writing $a = \prod_{i=1}^{r} p_i^{\alpha_i}$, $b = \prod_{j=1}^{s} q_j^{\beta_j}$, $(p_i, q_j) = 1$, it follows that

$$F_f(ab) = \max\{E(p_i^{\alpha_i}), E(q_j^{\beta_j}): i = \overline{1, r}, j = \overline{1, s}\} =$$
$$= \max\{\max\{E(p_i^{\alpha_i}): i = \overline{1, r}\}, \max\{E(q_j^{\beta_j}): j = \overline{1, s}\}\} =$$
$$= \max\{F_f(a), F_f(b)\},$$

so:

$$F_f(ab) = \max\{F_f(a), F_f(b)\} \text{ for } (a, b) = 1$$
(14)

When f(n) = n!, then clearly (12) is true, so (14) gives:

$$S(ab) = \max\{S(a), S(b)\} \text{ for } (a, b) = 1,$$
(15)

discovered by F. Smarandache [9].

3. The Euler minimum function must be studied essentially (by Theorem 1) for prime powers p^{α} . For values of E(p), $E(p^2)$, etc., see [5]. On the other hand, for each prime $p \geq 3$ one has

$$E(p-1) = p \tag{16}$$

Indeed, if $(p-1)|\varphi(k)$, then $p-1 \leq \varphi(k)$. Since $\varphi(k) \leq k-1$ for $k \geq 3$, one has $p \leq k$. Now k = p gives $\varphi(p) = p-1$, giving (16).

The values of the Euler maximum function E_* given by (7) however are even difficult to calculate in some cases. This function doesn't seem to have been studied up to now.

Clearly $E_*(1) = 2$ since $\varphi(1) = 1$, $\varphi(2) = 1$. One has $E_*(2) = 6$ since $\varphi(6) = 2, 2|2$, and it is well-known that $\varphi(n) \ge 4$ for $n \ge 7$. Now let $p \ge 3$ be a prime. Since $\varphi(k)|p$ implies $\varphi(k) = 1$ or $\varphi(k) = p$, for $p \ge 3$ the last equality is impossible for $\varphi(k)$ is even for all $k \ge 3$, we can have only $\varphi(k) = 1$ and $k_{max} = 2$. Actually since for $k \ge 3$, $\varphi(k)$ is even, $\varphi(k)|n$ is impossible for n =odd, so remains $k \le 2$, and $k_{max} = 2$. We have proved:

Theorem 3. One has $E_*(1) = 2$, $E_*(p) = \begin{cases} 6, & \text{if } p = 2\\ 2, & \text{if } p \ge 3 \end{cases}$ for all primes p; and $E_*(n) = 2$ for all $n \ge 1$ odd. For all $n \ge 2$ one has $E_*(n) \ge 2$. (17)

The last inequality is a consequence of $\varphi(2) = 1$ and the definition (7).

The value 2 is taken infinitely often, but the same is true for the value 6:

Theorem 4. For all $\alpha \geq 1$ one has

$$E_*(2 \cdot 7^\alpha) = 6 \tag{18}$$

Proof. If $\varphi(k)|(2 \cdot 7^{\alpha})$, then assuming $k \ge 3$, as $\varphi(k)$ is even, we can only have $\varphi(k) = 2$ or $\varphi(k) = 2 \cdot 7^a$ where $1 \le a \le \alpha$. Now, A. Schinzel [8] has shown that the equation $\varphi(x) = 2 \cdot 7^a$ is not solvable for any $a \ge 1$. Thus, it remains $\varphi(k) = 2$ and the maximal value of $k \ge 3$ is k = 6. This finishes the proof of (18). **Remark.** One has similarly $E_*(2 \cdot 5^{2\alpha}) = 6$ for any $\alpha \ge 1$. (19)

The function E_* can take greater values, too; the values at powers of 2 is shown by the following theorem:

Theorem 5. $E_*(2^m) = k$, where k is the greatest number which can be written as $k = 2^{\alpha}p_1 \dots p_r$, with $p_1 = 2^{2^{\alpha_1}} + 1, \dots, p_r = 2^{2^{\alpha_r}} + 1$ distinct Fermat primes, and where $\alpha = a + 1 - (2^{k_1} + \dots + 2^{k_r})$, with $k_1, \dots, k_r \ge 0$, $0 \le a \le m$. (20)

Proof. Since $\varphi(k)|2^m$, clearly $\varphi(k) = 2^a$, where $0 \le a \le m$. Now let $k = 2^{\alpha}p_1^{\alpha_1} \dots p_r^{\alpha_r}$ with p_1, \dots, p_r distinct odd primes. Since $\varphi(k) = 2^{\alpha-1}p_1^{\alpha_1-1} \dots p_r^{\alpha_r-1}(p_1-1) \dots (p_r-1) = 2^a$, we must have $\alpha_1 - 1 = \dots = \alpha_r - 1 = 0$ and $p_1 - 1 = 2^{a_1}, \dots, p_r - 1 = 2^{a_r}$ with $\alpha - 1 + a_1 + \dots + a_r = a$. This gives $p_1 = 2^{a_1} + 1, \dots, p_r = 2^{a_r} + 1$. Since p_1 is prime, it is well-known that it is a Fermat prime, so $a_1 = 2^{k_1}$, etc., and the theorem follows.

Remark 3. For m = 2 we get $\alpha \leq 3 - (2^{k_1} + \cdots + 2^{k_r})$, so with $k_1 = 0$ (when $p_1 = 3$), we get $k = 2^2 \cdot 3 = 12$. Another value would be $k = 2 \cdot 5 = 10$, so we get

$$E_*(4) = 12$$

Similarly, for m = 3,

$$E_*(8) = 30$$

If can be shown also that

 $E_*(16) = 60, \quad E_*(32) = 120, \quad E_*(64) = 240, \quad E_*(128) = 510, \text{ etc.}$

However, since the structure (or the cardinality) of the Fermat primes is not well-known, there are problems also with the calculation of great values of $E_*(2^m)$.

The function $E_*(n)$ can take arbitrarily large values, since one has: **Theorem 6.** For all $m \ge 1$ the following inequality is true:

$$E_*(m!) \ge \frac{(m!)^2}{\varphi(m!)} \tag{21}$$

Proof. It is known (see e.g. [2]) that the equation

$$\varphi(x) = m! \tag{22}$$

admits the solution $x = (m!)^2 / \varphi(m!)$. Now, since $\varphi(x) = m! | m!$, clearly $E_*(m!) \ge x$, giving inequality (21).

Corollary.
$$\lim_{m \to \infty} \frac{E_*(m!)}{m!} = +\infty$$
 (23)

Proof. Indeed, it is well-known (see e.g. [10]) that $\frac{m!}{\varphi(m!)} \to \infty$ as $m \to \infty$. By (21), this implies (23).

References

- K. T. Atanassov, Remark on József Sándor and Florian Luca's theorem, C. R. Acad. Bulg. Sci. 55(2002), no. 10, 9-14.
- [2] P. Erdös, Amer. Math. Monthly **58**(1951), p. 98.
- [3] M. Le, A conjecture concerning the Smarandache dual function, Smarandache Notion J. 14(2004), 153-155.
- [4] F. Luca, On a divisibility property involving factorials, C. R. Acad. Bulg. Sci. 53(2000), no. 6, 35-38.
- [5] P. Moree and H. Roskam, On an arithmetical function related to Euler's totient and the discriminantor, Fib. Quart. 33(1995), 332-340.
- [6] J. Sándor, On certain generalizations of the Smarandache function, Smarandache Notions J. 11(2000), no. 1-3, 202-212.

- [7] J. Sándor, On certain generalizations of the Smarandache function, Notes Number Theory Discr. Math. 5(1999), no. 2, 41-51.
- [8] A. Schinzel, Sur l'équation $\varphi(x) = m$, Elem. Math. **11**(1956), 75-78.
- [9] F. Smarandache, A function in the number theory, An. Univ. Timişoara, Ser. Mat., 38(1980), 79-88.
- [10] J. Sándor, On values of arithmetical functions at factorials, I, Smarandache Notions J., 10(1999), 87-94.