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Abstract 
Medical measurements, by their very nature, are array-oriented.  Matrices 
are, in a sense, their natural medium of display.  Fibonacci matrices, given 
the natural growth modeling of second order linear sequences, are then 
particularly suitable vehicles for displaying, developing and discussing 
medical phenomena.  This paper illustrates some of these aspects, partly 
for their pure mathematical elegance, and partly for their applied mathe-
matical aptness. 
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1. Introduction 
Medical data are often reported at discrete time intervals as in Table 1, in which the measure-
ments are for thirteen different patients with non-insulin dependent diabetes mellitus.  It makes 
sense then to use discrete mathematics in medical modeling rather than to interpolate between 
the measurements in order to utilize traditional analytic methods.  The array in Table 1 is a ma-
trix, and matrices have many simple mathematical properties which can both illuminate the 
processes and speed up the calculations.   It is the purpose of this paper to illustrate these ideas 
with some examples. 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
-30 205 390 210 270 130 465 160 170 180 125 115 150 115 

0 200 390 220 270 125 470 160 165 180 120 115 145 115 
10 145 380 155 270 120 465 140 150 160 110 95 95 105 
20 105 355 90 245 90 450 110 100 135 75 55 70 85 
30 75 345 70 220 70 445 100 85 130 20 45 40 65 
40 60 325 65 200 70 430 90 75 120 30 40 25 60 
50 40 330 55 190 70 410 80 60 120 30 40 40 55 
60 60 325 50 185 65 400 70 55 115 30 35 45 55 
70 80 310 60 180 60 390 70 55 105 35 30 45 55 
80 100 310 80 180 55 380 70 60 105 40 30 45 60 
90 110 310 95 180 60 385 80 65 105 55 55 50 65 

 
Table 1: Plasma Glucose (mg/100ml) (Columns 2-14) versus Time (minutes) (Column 1) 
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2. Fibonacci Growth 

Heyde [6] pointed out the advantages of a model which incorporates “an immature phase dur-
ing which individuals do not reproduce.  Such behaviour is common in nature and cannot be 
satisfactorily modeled by the ordinary Bienaymé-Galton-Watson process”.  Makhumdov [13] 
applied this to the process of spreading infectious diseases with three stages: (i) an initial stage 
of k periods, during which those who are ill with the disease do not infect others; a mature 
stage of l periods when each person affects n(t) of healthy people; and (iii) a recovery stage 
when each individual recovers r periods after initial infection.  For instance, in the case of the 
common cold we often get (on average) k = 2, l = 3, r = 7 [16].  Since APL is an array-oriented 
programming language with the advantage of both arithmetical and logical operations between 
matrices, code for Makhmudov’s model is listed in Table 1, with the output when k = 2, l = r = 
15, displayed in Table 2 since that yields the Fibonacci sequence in the final column.  (Note 
that the other eight columns display C(n,j) for j =  0,1,2,…,7.) For other pertinent generaliza-
tions, see [14]. 

 
 ∇DISEASE1[0]∇ 
 ∇1 DISEASE1 K 
[1] “COEFFICIENTS FOR GENERAL TERM IN SPREAD OF DISEASE: 
[2] “LEFT ARGUMENT-NUMBERS OF ROWS AND COLUMNS IN ARRAY: 
[3] “RIGHT ARGUMENT-K,L AND R. 
[4] A←Iρ0 ◊ R←C←1 
[5] L1:A[R:C]←1 
[6] →((I[1]≥R)∧ (K[3]≥R←R+1))/L1 
[7] L2:C+C+1◊R←((C-1)xK[1])+1 
[8] →(((i[1]<R←R+1) ∧ (C=A[R;C]←C))v((I[1]<R←R+1) ∧ (A[R:C]←1))v((I[2]≤C)v(I[1]≤R)))/END 
[9] L3:D←0 
[10] L4:A[R:C]←A[(R-D+K[1]);(C-10]+A[R:C] 
[11] →((0<R-D+K[1]) ∧ (K[2]>D←D+1))/L4 
[12] →(I[1]≥R←R+1)/L3 
[13] →L2 
[14] END:A,+/A 
 ∇ 

Table 2: An APL program for Makhmudov’s model 
 
 

14   8   DISEASE1  2  15  15 
1 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 2 
1 2 0 0 0 0 0 0 3 
1 3 1 0 0 0 0 0 5 
1 4 3 0 0 0 0 0 8 
1 5 6 1 0 0 0 0 13 
1 6 10 4 0 0 0 0 21 
1 7 15 10 1 0 0 0 34 
1 8 21 20 5 0 0 0 55 
1 9 28 35 15 1 0 0 89 
1 10 36 56 35 6 0 0 144 
1 11 45 84 70 21 1 0 233 
1 12 55 120 126 56 7 0 377 

Table 3: Application of the APL code 
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We notice incidentally that the columns, j, j = 0,1,2,…,8, in Table 3 yield the sequences 
{C(n,j)} for j <8.  For example, {C(n,2)} are the triangular numbers, {C(n,3)} are the tetrahe-
dral numbers, while {C(n,8)} are obviously the Fibonacci numbers. 
 

3. The Leslie Matrix 
The elegance of properties is important in modeling, and a brief consideration of the Leslie ma-
trix [11] illustrates this. Fibonacci growth arises quite naturally in matrix representation.  As an 
illustration we express the dynamics of Fibonacci growth in Leslie matrix form and relate this 
to other known matrices and second order sequences. 
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First row elements represent births of two offspring to each mating pair in generation t, and 
subdiagonal elements represent survival of each year class (here 100%).  The final diagonal 
element confers immortality to the population.  When this element is zero, L becomes the more 
familiar Q matrix.  The Leslie matrix is also related to generalizations of the continued fraction 
algorithm [15]. 
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in which { }mrU , is an integer sequence which satisfies the second order generalized Fibonacci 
linear homogeneous recurrence relation (1.1) in the form 
 

,2,2,1,. >+= −− mUUU mrmrmr  (3.4)
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with initial conditions .1,1 2,1, −== nUU rr  When n = 2, we get the ordinary Fibonacci se-
quence { }nF .  The first few examples of this sequence are displayed in Table 4. 
 

 m = 1 2 3 4 5 6 7 
{ }mU ,3  1 2 3 5 8 13 21 

{ }mU ,4  1 3 4 7 11 18 29 

{ }mU ,5  1 4 5 9 14 23 37 

{ }mU ,6  1 5 6 11 17 28 45 

Table 4:{ }mrU , , r =3,4,5,6; m=1,2,…,7 
 
As a further illustration, we can see that for r = 4, and n =5, 
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so that, in turn,                                                                                                                                                         
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Note further, that if we treat (3.4) as a partial difference equation, then 
 

,2,11,.1 >=− −−+ mFUU mmrmr  (3.5)
and, furthermore, 

{ } { },1.3 += mm FU  
{ } { },.4 mm LU =  
{ } { },.5 mm TU =  

{ }mL is the well-known sequence of Lucas numbers, and { }mT is a sequence first investigated by 
Brousseau [1]. 
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4. A Diabetes Example 
The purpose of this research was to compare the rates of absorption of insulin administered in-
travenously (IV) and subcutaneously (SC) in humans.  Experiments with rats suggest that sig-
nificant inactivation of the insulin occurs at or near the injection site when it is administered 
subcutaneously in the usual way [18]. 

Insulin promotes lipid synthesis and inhibits lipid breakdown which causes an increase in 
body weight with excess dosage.  Hyperinsulinaemia causes a breakdown in the regulations of 
the insulin receptor.  This exaggerates the insulin resistant state already in existence in over-
insulined T1D patients or in T2D obese patients.  We effectively have a two-compartment 
model (Figure 1) in which ix is the concentration of insulin in Compartment i at time it . It is 
assumed that insulin can flow from SC into IV, but not from IV into SC, and that the clearance 
rates k from each compartment are constant: 

• ak represents a subcutaneous injection, 
• 12k represents the flow of insulin from the SC tissue to the veins, and 
• dc kk , represents the disappearance (metabolic or otherwise) of the insulin [2]. 

 
 SC  IV 

ak →  → 12k →  
 ↓ dk   ↓ ck  

Figure 1 
 

The problem is to consider a steady infusion rate k(t) appropriate units of insulin per minute 
into the IV compartment.  This can be represented by a one-compartment model (Figure 2) 
since there is no feedback from IV to SC.   

 
i(t)→ IV → ck  

Figure 2 
The differential equation which represents the amount of insulin administered IV, x, at time t is 
then 

,0)0(),( =+−= xtixk
dt
dx

c  (4.1)
We used a commonly accepted clearance rate of %10=ck  of volume per minute, though indi-
vidual clearance rates can be found by curve-fitting techniques [3].  Our problem now is to find 
the insulin infusion rate i(t) which makes the IV profile given by Equation (4.1) fit as closely 
as possible to the subcutaneous profile s(t) over a given period of T minutes.  Equation (4.1) 
can be solved by the Laplace convolution theorem and then discretized to yield  
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we get the recurrence relation 
( ) nrcrn atka ∆−=+ exp,1  (4.4)

and 
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Our least squares problem is now to find the set of intravenous injection rates NrI r ,...,2,1, = , 
so as to minimize 
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in which ns is the value of the SC profile at time .),( TtNttn =∆=∆  Let 
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For example, when N = 3, 
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From (4.7) we obtain  
sAi 1−=  (4.7)

 
which is the set of intravenous infusion rates. AAT is a Cholesky decomposition which is util-
ized in the next section with a generalized Fibonacci recurrence relation [7].  (Well-
documented error analyses exist for Cholesky decompositions [21]) 

 
5.  A Breast Cancer Example 

Mammography is a means of detecting breast cancer before a mass can be felt by a physical 
breast examination. However, because of the non-specificity of the mammographic appearance 
of many malignant lesions, false positives can occur [5].  Ultrasonography is therefore used as 
a complement to mammography because the ultrasound characteristics of malignant lesions are 
often highlighted in dense parenchyma (the functional elements of an organ) and cystic lesions 
can usually be differentiated from solid masses [4].   
 
Breast tissue is glandular, fibrous, and fatty, the last of which is the main bulk of the breast.  
Let  
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• U be the ultrasound energy transmitted, 
• M be the metabolic energy generated, 
• P be the thermal energy carried away by perfusion, and 
• S be the thermal energy lost be emission from the skin. 

Figure 3 shows the energy distribution of these variables when ultrasound is directed onto the 
skin in the direction of the suspected lesion. 
 

S U  
↑ ↓  

M-S-(1-b)P →      (1-b)P 
U-bP →      bP 

Figure 3: Ultrasound energy transfer 
 

Diagnostic sound waves can only be transmitted in solids and liquids because they utilize a 
frequency range between 1 and 10 million hertz (1x106 cycles per second.  By way of compari-
son, a frequency range of 20 to 20,000 cycles per second provides stimulation of the subjective 
sensation of hearing [20].  When an ultrasound beam passes through tissue, energy is partly 
absorbed and converted to heat.  This causes a rise in tissue temperature which depends on 
several factors such as the heat conduction and transport by blood flow from the exposed tissue 
into surrounding regions.  Figure 4 is a flow diagram to link these energy components.  
 

 

Figure 4: The flow diagram 
 
If bP represents that part of the ultrasound energy which is absorbed and carried away by per-
fusion )10( ≤≤ b , then U-bP is the ultrasound energy which reaches the lesion. (Perfusion in 
general is forcing fluid through an organ by way of blood vessels.) Since it is generally recog-
nized that there is increased metabolic activity within breast tumours, we can assume that the 
ultrasound energy received on the lesion will increase the local metabolic activity as formu-
lated in 
 

[ ].)1()1()1()( −−−=−− tbPtCUtMtM µ  (5.1)
 
The metabolic energy that remains after deducting part of it due to the energy lost from the 
skin and perfusion is M-S-(1-b)P.  Since increased blood flow is associated with increased 
metabolic activity [12], the increase in perfusion rate is associated with the increase in this re-
maining metabolic energy as expressed in 
 

[ ].)1()1()1()1()1()( −−−−−−=−− tPbtStMtPtP λ  (5.2)
 
Furthermore, skin temperature results primarily from blood perfusion to the tissues and the 
blood flow in the superficial veins [12], as represented by 
 

U  M 
5  ↓ 6 ↓  7 

U - bP  M-S-(1-bP) 
4 

3
 2 

P →  1 S 
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).()( taPtS =  (5.3)
 
The matrix form of Equations (5.1)-(5.3) is 
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Since the ultrasound energy applied at the surface is constant, we set k = U(t-2), and for nota-
tional convenience we express S(t)/S(t0) as tS , so we can rewrite Equation (5.4) as the second 
order inhomogeneous recurrence relation [9] 
 

[ ] [ ] ).(/)1(1)1(2 021 tSkaSbbaSbaS ttt λµλµλλλλ =−−+−−−−−− −−  (5.5)
 
Horadam and Shannon [8] expounded a method for solving generalized inhomogeneous equa-
tions of this form which can be rewritten as 
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where 3−tS is treated as unity, t = 0,1, … ,n, with n+1 the number of experimental data points, 
and for notational convenience we let 
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The sum of squares of errors, SSE, has the form  
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By differentiating (5.7) with respect to ,3,2,1, =iBi  and equating each of them to zero, three 
normal equations are obtained: 
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the last being estimates, and where  
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Therefore,  
,1ESB −=

)
 

 
which can be solved by the Cholesky-Turing method since S is symmetric [10]. 
  

6.  Concluding Comments 
The parameters µλ,,a were computed by fitting the model to thermal data.  For example, the 
values in Table 5 are for several patients and where b = 0.85 which corresponds to a perfusion 
condition for a lesion approximately 5cm below the surface of the skin. 
 

Patient Remarks D a λ  µ  
A Benign 1.9828 0.8050 1.6222 0.0757 
B Benign 2.3857 0.8144 2.2098 0.2869 
C Malignant -1.4888 0.8491 2.7175 0.9589 
D Malignant -1.2115 0.8409 1.8230 0.7220 

Table 5: Results of fitting the model to experimental data 
 
Where a malignant process is present, a differential cooling system occurs in the local skin sur-
face prior to recovery to the initial skin temperature [19], where different responses (no recov-
ery) were observed in benign lesions. It seems that if the response curve shows an initial cool-
ing and µ >0.7, then a lesion may be present. 
 
The generalized Fibonacci recurrence relation reasonably accounts for the thermal changes to 
the skin of the breast, and the associated matrix method presented here permits improved com-
putational convenience. 
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