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Abstract 
This paper considers some properties of the third order recursive se-
quence defined by the linear recurrence relation 
 

,2,1,0,3,2 3,2,, =≥+= −− mnwww nmnm
m

nm , 
 
with appropriate initial conditions.  The present work follows on from 
the case m = 0 (Shannon et al). Relationships with the well-known se-
quences of Fibonacci, Lucas and Pell are developed.  The motivation for 
the study was to find analogous results to some of the second order clas-
sic identities such as, for example, Simson’s identity and  Horadam’s 
Fibonacci number triples. 
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1. Introduction 

In previous papers, we examined, inter alia some properties of the third order recur-
sive sequence { }nr  [2,8,9], defined by the linear recurrence relation  

3,32 ≥+= −− nrrr nnn ,         (1.1) 
 
with initial conditions 1,0,1 210 === rrr , and the second order recursive sequence 
{ }nmt ,  [9], defined by the linear recurrence relation  

2,2 2,1,, ≥+= −− nttt nmnm
m

nm ,         (1.2) 
 
with initial conditions 1,0 1,0, == mm tt . (In both cases we can allow for 0<n .) Fur-
thermore, if we define { }nS  to satisfy (1.1) with initial conditions 

3,2,0 321 === SSS , we find that 
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nnn
n bbaS ++=                       (1.3) 

 
where bba ,,  are the roots of the associated characteristic equation 13 += xx  by anal-
ogy with the “Binet” form of the general term of the Lucas sequence, namely 

nn
nL βα +=             (1.4) 

 
where nn βα ,  are the roots of the associated characteristic equation 12 += xx . 

In the same vein, we have 
{ } { }nn Ft ≡,0 ,            (1.5) 

and 
{ } { }nn Pt ≡,1 ,            (1.6) 

the sequence of Pell numbers [9]. 
 

2. Motivation 
The motivation for this study arose from the neat analogies with the Fibonacci and 
Lucas number properties displayed by{ }nr . Some examples of these include 
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in comparison with the well-known Fibonacci identity 
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Similarly, 
122111 −−−−−−+ +++= jnjnjnjnjn rrrrrrrrr ,         (2.3) 

by analogy with 
11 −−+ += jnjnjn fffff ,          (2.4) 

in which 1+= nn Ff  in the usual Fibonacci notation.  Note that nf count n-board tilings 
with squares and dominoes, and nr count tilings with dominoes and triminoes [1]. 
 
It is proposed here to combine aspects of both the types of sequences in (1.1) and 
(1.2) by considering the third order recursive sequence defined by the linear recur-
rence relation 

3,2 3,2,, ≥+= −− nwww nmnm
m

nm , (2.5)
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with initial conditions .2,,1 2,1,,

m
mmnm wmww ===   It can be readily confirmed then 

that 
{ } { }nn rw ≡,0 , 

and  
{ } { }nn Fw ≡,1 . 

The latter follows because 
21 −− += nnn FFF  

( ) 232 −−− ++= nnn FFF  

322 −− += nn FF ,  
 

3. The Case m = 1 
Because the Fibonacci case is so well known we shall consider in this section the third 
order Pell-Fibonacci numbers by means of the third order recurrence relation 

 3,2 3,12,1,1 ≥+= −− nuuu nnn             (3.1) 
 
with initial conditions 12,11,10,1 === uuu , with the first few elements in Table 1. 
 

N 0 1 2 3 4 5 6 7 8 9 10 11 
nu ,1  1 1 1 3 3 7 9 17 25 43 67 111 

Table 1: First few values of { }nu ,1  
 

Consider now the associated characteristic equation: 
 

( ) 0123 =−−≡ xxxf            (3.2) 
which factors into 

           )1)(1()( 2 −−+= xxxxf  
Consequently, 

( ) ( )( )( )1+−−= xxxxf βα . 
 
It is of interest to note here that Hall [3] formed a somewhat similar third order se-
quence with auxiliary equation roots 21

2
2

2
1 ,, βααα  from a second order sequence 

with auxiliary equation roots 1α  and 2α . 
 From the initial conditions, we can then get 
 

( ) ( )nnn
nu 12

1,1 −+−
−

=+ βα
βα

         (3.3) 

or 
( )n

nn Fu 12 1,1 −−= − .           (3.4) 
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Moreover, if we also define { }nv ,1  to satisfy (1.3) with initial conditions 
4,0,3 2,11,10,1 === vvv , then 

( )nnn
nv 1,1 −++= βα           (3.5) 

( )n
nL 1−+= .           (3.6) 

 
From (3.4) and (3.6) we obtain by analogy with  
 

nnn FLF 2= , 
that 
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that is, 
( ) .1 312,1,11,1 +++ −+= n

n
nnn Fuvu                                                 (3.7) 

 
For example, when n = 2, the left hand side of (3.7) is 3x4 and the right hand side is 
7+5. 
 

Another analogy is with Simson’s identity as in (2.2), for which we have 
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Proof: We use induction on n and 
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Taking determinants we get the result. 
 

4. Associated Polynomials 
The { }nu ,1  can also be defined in terms of the ordinary generating function 
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This suggests a consideration of polynomials associated with{ }nmw , . We define asso-
ciated polynomials 

,3),()(2)( 3,2,, ≥+= −− nxwxwxw nmnm
m

nm  (4.2)

 
with .2)(,)(,1)( 2

2,1,0, xxwmxxwxw m
mmm ===  For reasons indicated above we shall 

consider{ })(,1 xu n since variations of the Fibonacci polynomials are well known [7].  
Consequently, we define polynomials ( ){ }xu n,1 : 
 

( ) ( ) ( ) 3,2 3,12,1
2

,1 ≥+= −− nxuxuxxu nnn ,          (4.3) 
 
with ( ) ( ) ( ) 2

21,10,1 ,,1 xxuxxuxu === . Then 
 

( )
( )
( )
( ) ,144

34

2

12

36
6,1

25
5,1

4
4,1

3
3,1

++=

+=

+=

+=

xxxu

xxxu

xxxu

xxu

 

so that, in general, 
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(4.4)

 
in which ina ,  satisfies the partial recurrence relation 
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with boundary conditions 
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It is straightforward to establish that the ordinary generating function for ( )xu n,1  is  
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and, from (4.1):  
                                 ( ) ( ).,1 yUyU =  
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Riordan [6] utilized convolutions in his study of generating functions of powers of 
Fibonacci numbers, and Hoggatt and Bicknell-Johnson developed properties of Fibo-
nacci convolution sequences [4]. More recently, Terrana and Chen [15] developed an 
alternative approach to that of Riordan. We now define kth order convolution poly-
nomials, ( ){ }kyxU ;,  by means of the generating function 
 

( ){ } ( ) ( ) n

n

k
n yxukyxU ∑

∞

=

=
0

,1;,                                      (4.6) 

( )( )[ ] 1132222 211
+−

−−−+=
k

yyxyxxy                         (4.7) 
so that  

( ) ( )yxUyxU ,1;, =  
and  

( ) ( )yUyU =1;,1 . 
 
From these we can obtain the first convolution numbers  
 

( ) { }…,30,11,0,3,2,11
,1 =nU              (4.8) 

 
and the interested reader might like to develop some properties for them such as find-
ing an expression for 

( ) n

n

k
nk xuxU ∑

∞

=

=
0

,1 .               (4.9) 

 
5.  The Case m = 2 

Here we outline some aspects of the case m = 2: 
 

,3  ,4 3,22,2,2 ≥+= −− nwww nnn  (5.1)

 
with 2 ,1 1,20,2 == ww and .22

2,2 =w  The first few terms are displayed in Table 2.  
 
n 0 1 2 3 4 5 6 7 8 9 

nw ,0  1 0 1 1 1 2 2 3 4 5 

nw ,2  1 2 4 9 18 40 81 178 364 793 

Table 2: The first ten terms of { } .2,0,, =mw nm  
 
The associated polynomials are then 
 

1)(0,2 =xw  1=  )2(2,0 xw=  
xxw 2)(1,2 =  )2( x=  )2(3,0 xw=  

2
2,2 4)( xxw =  2)2( x=  )2(4,0 xw=  
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18)( 3
3,2 += xxw  1)2( 3 += x  )2(5,0 xw=  

xxxw 216)( 4
4,2 +=  )2()2( 4 xx +=  )2(6,0 xw=  

25
5,2 832)( xxxw +=  25 )2(2)2( xx +=  )2(7,0 xw=  

11664)( 36
6,2 ++= xxxw  1)2(2)2( 36 ++= xx  )2(8,0 xw=  

xxxxw 248128)( 47
7,2 ++=  )2()2(3)2( 47 xxx ++=  )2(9,0 xw=  

258
8,2 1296256)( xxxxw ++=  258 )2(3)2(3)2( xxx ++=  )2(10,0 xw=  

 
so that we can see 

)2()( 2,0,2 xwxw nn +=  
 
which is analogous to the relation between the ordinary Fibonacci polynomials, 
fn (x), and the ordinary Pell polynomials, pn (x) , namely, 

 
),2()( xfxp nn =  (5.2)

as in 
).2()2(3)2(4)2(63232)( 6

3535
6 xfxxxxxxxp =++=++=  

Also 
nn ww ,0,0 )1( = and nn ww ,2,2 )1( =  

by analogy with 
nn ff =)1(  

 
for the ordinary Fibonacci polynomials and numbers.  

Somewhat like the ( ){ }xu n,1  (in (4.4)), the{ })(,0 xw n satisfy 
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(5.3)

 
in which inb ,  satisfies the partial recurrence relation 
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We can also produce a Pythagorean triple analogous to Horadam’s [5], which can be 
written as 

( ) ( ) ( )221
2
,2

2
21

2
1 22)2( +++++ +=++ nnnnnnnn ffffffff  (5.4)

 
The corresponding result is 
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(5.5)
 
Proof: From the recurrence relation (2.5) we have 
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For instance, when n = 0 and m = 2 in (5.5), we have 
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One could then investigate further in the manner of Horadam whether all Pythagorean 
triples can be represented by (5.5). 
 

6. Concluding Comments 
Other further research could involve the “golden ratio” associated with the Fibonacci 
sequence (m = 1) in the second column of Table 3 and the “plastic number” associated 
with the Padovan sequence (m = 0) in the fourth column of the table.  This table also 
shows the first value of n for which the ratio stabilises at the stated level of accuracy.  
These ratios could be used to investigate “spirals” and to establish Binet-type general 
terms for the 3rd order sequences [13], as well as to reduce them to 2nd order sequenc-
es [10] and to find other properties such as those related to generalized continued frac-
tion algorithms [9]. 
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m nmnm tt ,1, /+  n nmnm uu ,1, /+  n 
0 
1 
2 
3 

1.618 
2.414 
4.236 
8.123 

10 
6 
6 
4 

1.325 
1.638 
2.115 
2.889 

20 
10 
65 
199 

Table 3: Limiting ratios of adjacent terms (to 3 decimal places) 
 
Gratitude is expressed to Tristan Foster for valuable technical assistance in the pro-
duction of the paper and to an anonymous referee for very helpful corrections and 
suggestions. 
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