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Abstract
This paper considers some properties of the third order recursive se-
guence defined by the linear recurrence relation
W =2" W +Wo 3, N23, m=012,,

with appropriate initial conditions. The present work follows on from
the case m = 0 (Shannon et al). Relationships with the well-known se-
guences of Fibonacci, Lucas and Pell are developed. The motivation for
the study was to find analogous results to some of the second order clas-
sic identities such as, for example, Simson’s identity and Horadam's
Fibonacci number triples.
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1. Introduction
In previous papers, we examined, inter alia some properties of the third order recur-
sive sequence {r, } [2,8,9], defined by the linear recurrence relation

="l p+l3,N>3, (1.1)

with initial conditions r, =11, =0,r, =1, and the second order recursive sequence
{tm,n} [9], defined by the linear recurrence relation

thn =2+t N2 2, (1.2)

m,n-2"

with initial conditions t ,=0,t,, =1. (In both cases we can allow forn<0.) Fur-
thermore, if we define {S,} to saisfy (1.1) with initid conditions

S =0S,=2S5, =3, wefind that
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S, =a"+b"+b" (1.3)

wherea, b, b are the roots of the associated characteristic equation x* = x+1 by anal-
ogy with the “Binet” form of the general term of the L ucas sequence, namely
L =a"+p" (1.4)

wherea", 5" arethe roots of the associated characteristic equationx® = x+1.
In the same vein, we have
{to, n } = {Fn }1 (15)
and
{tl, n}E {Pn }’ (16)
the sequence of Pell numbers[9].

2. Motivation
The motivation for this study arose from the neat analogies with the Fibonacci and

L ucas number properties displayed by {r, }. Some examples of these include

r, r, r,]™ [o 1 o™
rob n r, =0 0 1
b r, 110
0 2 1 ’ (21)
rn—2 I’n rn—1
=My T I N2 0
I’n I’n+2 rn+1
in comparison with the well-known Fibonacci identity
o 1" [f., f
=/ ™ "|n>0. (2.2)
11 f, f..
Similarly,
Mooy =Tl Hlal g H o+ T, (2.3)
by analogy with
fo =t f+f .. (2.9
inwhich f, =F_,, intheusua Fibonacci notation. Note that f_ count n-board tilings

with squares and dominoes, andr,, count tilings with dominoes and triminoes [1].

It is proposed here to combine aspects of both the types of sequences in (1.1) and
(1.2) by considering the third order recursive sequence defined by the linear recur-
rence relation

W, =2" Wy + W, n>3, (2.5)

m,n m, m,n-3 7
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with initial conditions w,,, =1 w, , =mw, , =2". It can be readily confirmed then
that

and

The latter follows because
I:n = I:n—l + I:n—2

= (Fn—z + Fn—3)+ I:n—2
= 2Fn—z + Fn—3 '

3. TheCasem=1
Because the Fibonacci case is so well known we shall consider in this section the third
order Pell-Fibonacci numbers by means of the third order recurrence relation

U, = 2u1,n—2 +U 5, N> 3 (3.1

withinitial conditions u, , =u,, =u,, =1, with thefirst few elementsin Table 1.

N 0 1 2 3 4 5 6 7 8 9 10 | 11

u, 1 1 1 3 3 7 9 17 | 25 | 43 | 67 | 111

Table 1: First few values of {ul'n}

Consider now the associated characteristic equation:

f(x)=x*-2x-1=0 (3.2)
which factorsinto

f(X) = (X+1)(x* —x-1)
Consequently,

f(x)=(x—a)x-B)x+1).

It is of interest to note here that Hall [3] formed a somewhat similar third order se-
quence with auxiliary equation roots «?, >, a, 5, from a second order sequence
with auxiliary equation roots ¢, and «,.

From the initial conditions, we can then get

2 n n n
u1,n+1zm( -p )+(_1) (3.3)

or
u, =2F,-(-1)". (3.4)
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Moreover, if we aso define {v,,| to satisfy (1.3) with initid conditions
Vo =3V, =0,v,,=4,then

A+ (=) (35)
=L, +(-2)". (3.6)

From (3.4) and (3.6) we obtain by analogy with

F L =F,,
that
Uy ot Vo n = (2F, + (1)L, +(<2)")
=2F L, +1+(-1)"(2F, + L,)
=2F, +1+(-1)"F,_,,
that is,

U g Vin =Upopa t (_ 1)n F (3-7)

n+3*

For example, when n = 2, the left hand side of (3.7) is 3x4 and the right hand side is
7+5.

Another analogy iswith Simson’sidentity asin (2.2), for which we have

u1,n—2 ul,n ul,n—l
Upa Uy Uy, = 4 (3-8)

u1,n ul,n+2 ul,n+l

Proof: We use induction on n and

O 1 O u1,n—3 ul,n—l u1,n—2 u1,n—2 ul,n ul,n—l O 1 O 1 1 1
0 0 1j{ju,, U, Ugs|=|Upy Uy, U, |=]0 0 111 31
1 2 O u:L,n—l ul,n+l ul,n ul,n u1,n+2 l"Il,n+l 1 2 O 1 3 3
Taking determinants we get the resullt.
4. Associated Polynomials
The {uL N } can also be defined in terms of the ordinary generating function
uy)=2t,y"
n=0
= (1+ y— y2X1— 2y? — y3)_1 : (4.1)

=1+y+y +3y° 43y + 7y° + ...
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This suggests a consideration of polynomials associated with {Wm’n } We define asso-
ciated polynomials
Wm,n (X) = 2me,n—z (X) + Wm,n—S(X)! n= 3! (42)

withw,, o (X) =1,w,,, (X) = mx,w,,,(X) = 2"x>. For reasons indicated above we shall
consider {ul,n(x)}since variations of the Fibonacci polynomias are well known [7].
Consequently, we define polynomiasiu, , (x)}:

U (X) =2x* Up o (X)+ Uy 3 (X)’ nx3, (4.3)

with u, , (x)=1 u,, (x)=x, u, (x)=x>. Then

so that, in general,

)

IRCED XS (44

inwhich a,; satisfiesthe partial recurrence relation

a,, =2a,, +8,5,,,1<i< [?J

with boundary conditions
n-1

%ﬁ=2bLam=Qiﬂ%ﬂ
It is straightforward to establish that the ordinary generating function for u, | (x) is
U (%)= 3t 0y’
= (1+ Xy — Xy? Xl— 2x%y? — y3)_1 (4.5)
=1+ xy+x°y2 + (2 + 1)y + (2x* + x)y* + ..

and, from (4.1):
ULy)=U(y)
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Riordan [6] utilized convolutions in his study of generating functions of powers of
Fibonacci numbers, and Hoggatt and Bicknell-Johnson devel oped properties of Fibo-
nacci convolution sequences [4]. More recently, Terrana and Chen [15] developed an
alternative approach to that of Riordan. We now define kth order convolution poly-
nomials, {U(x,y;k)} by means of the generating function

U(x y;k)}= i ul) (x)y" (4.6)
- (1+ Xy — x2y2X1— 2x2y? —y? )_1]“1 (4.7)
so that
U(x y:)=U(xy)
and

From these we can obtain the first convolution numbers
u® ={2301130,...} (4.8)

and the interested reader might like to develop some properties for them such as find-
ing an expression for

U,(x)= iufnx”. (4.9)

n=0

5. TheCasem=2
Here we outline some aspects of the case m= 2:

W, =4W, ,+W, ., N>3 (5.0

with w, , =1, w,, = 2and w,, = 2% Thefirst few terms are displayed in Table 2.

n 0 1 2 3 4 5 6 7 8 9
Wy, 1 0 1 1 1 2 2 3 4 5

A 1 2 4 9 18 40 81 | 178 | 364 | 793

Table 2: The first ten terms of {Wm’n } m = 0,2.

The associated polynomials are then

W,,(X) =1 =1 =Wy, (2x)
W2,1(X) = 2X =(2x) = Wp3 (2x)
W5 (X) = 4x° = (ZX)2 =Wo4 (2x)
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W,5(X) =8x°+1 =(2x)°+1 =W, 5(2X)

W, 4 (X) =16x* + 2x =(2x)* +(2x) =W, 5(2X)
W, 5(X) = 32x° + 8x* = (2x)° +2(2x)? =W, ,(2x)
W, 6(X) = 64x° +16x° +1 =(2x)°% +2(2x)° +1 = Wy (2X)
W,,(X) =128x" + 48x* + 2x =(2X)" +3(2x)* + (2x) =W, 4(2X)
W, g(X) = 256X% +96X° +12x* = (2%)° +3(2%)° +3(2X)° = Wy50(2X)

so that we can see
W2,n (X) = WO,n+2 (2X)

which is analogous to the relation between the ordinary Fibonacci polynomials,
f,(x), and the ordinary Pell polynomials, p,(x), namely,

P, (X) = f,(2x), (5.2)
asin
Pe (X) = 32x° + 32x% + 6x = (2X)° + 4(2x)* + 3(2%) = f,(2X).
Also
Wo,n (1) = Won and Wan (1) =W, ,
by analogy with

L=,

for the ordinary Fibonacci polynomials and numbers.
Somewhat liketheiu, , (X)} (in (4.4)), the{w, , (x) }satisfy

)

Wy ()= Db, X" 53

inwhich b, ; satisfiesthe partial recurrence relation

b, =Dy 514+ by, 151 {%BJ
with boundary conditions

bn,O :1' bn,i :O’i > L%SJ

We can also produce a Pythagorean triple analogous to Horadam'’s [5], which can be
written as

(f,(f, +2f,0)) +(2f, 1 f, ) = (F2, +2F,.f. ) (5.4)

n+l " n+2 n+l " n+2

The corresponding result is

22



m+1 2 m+1 2 _( 2 m+1 )2
((Wm,n me,n + 2 Wm,n+1 )) + (2 Wm,n+1Wm,n+3) - Wm,n + 2 Wm,n+le,n+3

Proof: From the recurrence relation (2.5) we have

2 m )2
Wm,n = (Wm,n+3 -2 um,n+1

2 + 22mW2 _ 2m+1W

— "'m,n+3 m,n+1 m,n+1

W

m,n+3"

Then

2 m+l 2 (2 2m,, 2 2
(Wm,n + 2 Wm,n+1 ) - (Wm,n+3 + 2 Wm,n+1)

W

m,n+3

) am,, 4 2m+l, 2 2

— "'mn+3 + 2 Wm,n+1 + 2 Wm,n+le,n+3
) 2m,, 2 2 2mH2.,,2 2

- (Wm,n+3 -2 Wm,n+1) +2 Wm,n+1Wm,n+3

((Wm,n XWm,n + 2m+le,n+1 ))2 + (2m+1W

m,n+1

W

For instance, whenn =0 and m= 2 in (5.5), we have

right hand side = (W, o (8W,, + W, )° + (BW,, W, , )’
=289+ 20,736
= 21,025
left hand side = (w2, + 8w, ,w, , |’
= (1+ 8x 2x 9)2
= 145" = 21,025.

m,n+3) .

(5.5)

m m 2 ( m+1
((Wm,n+3 -2 Wm,n+lXWm,n+3 +2 Wm,n+1)) +12 Wm,n+le,n+3

m 2 m+1 2
((Wm,n me,n+3 + 2 Wm,n+l )) + (2 Wm,n+le,n+3)

One could then investigate further in the manner of Horadam whether all Pythagorean

triples can be represented by (5.5).

6. Concluding Comments

Other further research could involve the “golden ratio” associated with the Fibonacci
sequence (m = 1) in the second column of Table 3 and the “plastic number” associated
with the Padovan sequence (m = 0) in the fourth column of the table. This table also
shows the first value of n for which the ratio stabilises at the stated level of accuracy.
These ratios could be used to investigate “spirals’ and to establish Binet-type general
terms for the 3" order sequences [13], as well as to reduce them to 2™ order sequenc-
es[10] and to find other properties such as those related to generalized continued frac-

tion algorithms [9].
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m tm,n+1 /tm,n n um,n+1 / um,n n

0 1.618 10 1.325 20
1 2414 6 1.638 10
2 4,236 6 2.115 65
3 8.123 4 2.889 199

Table 3: Limiting ratios of adjacent terms (to 3 decimal places)

Gratitude is expressed to Tristan Foster for valuable technical assistance in the pro-
duction of the paper and to an anonymous referee for very helpful corrections and
suggestions.
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