RISING FACTORIAL BERNOULLI POLYNOMIALS

A. G. Shannon

Warrane College, The University of New South Wales, Kensington 1465, & Raffles College, 99 Mount Street, North Sydney, NSW 2065, Australia Email: *tony@warrane.unsw.edu.au; tonySHANNON@raffles.edu.au*

Abstract:

This paper considers some properties of rising binomial coefficients and two analogs of the Bernoulli polynomials which can be developed from them.

Keywords:

q-series, binomial coefficients, rising factorials, generalized Bernoulli polynomials, Gauss-Cayley generalizations, Fermatians.

AMS Classification Numbers: 11B65, 11B39, 05A30

1. Introduction

In a previous paper [7], falling and rising factorials were utilised in the following forms. The falling factorial, an r-permutation of n distinct objects, is given by

$$n^{\frac{r}{2}} = P(n, r)$$

= $n(n-1)...(n-r+1)$ (1.1)

and is such that

$$\nabla P(n,r) = P(n,r) - P(n-1,r)$$

= rP(n-1,r-1), (1.2)

(see, for example Riordan [5]). Here we have followed Knuth's suggestion at the 1967 Conference on Combinatorial Mathematics and its Applications (Riordan [6]) for the rising and falling factorial coefficients. Similarly, we showed for the rising factorial of n

 $n^{\bar{r}} = n(n+1)...(n+r-1)$ (1.3)

that

$$\nabla n^{\vec{r}} = n^{\vec{r}} - (n-1)^{\vec{r}}$$
$$= rn^{\vec{r-1}}.$$
(1.4)

This is a recurrence relation for n^r , which is an *r* permutation of n + r - 1 objects, and which is related to the Stirling numbers. Corresponding binomial coefficients were also considered, namely,

$$\binom{n}{r} = \frac{n(n-1)...(n-r+1)}{r(r-1)...(r-r+1)}$$

= $\frac{n^{\frac{r}{2}}}{r^{\frac{r}{2}}}$ (1.5)

in which n^r is the falling *r*-factorial of *n* and

$$C(n,r) = \frac{n^r}{r^{\bar{r}}}$$
(1.6)

in which $n^{\bar{r}}$ is the rising *r*-factorial of *n*. Thus

$$C(n,r) = \frac{n(n+1)...(n+r-1)}{r(r+1)...(r+r-1)},$$
(1.7)

which is also suggested by the Gauss-Cayley form of the generalized binomial coefficient. Here it is proposed to consider two rising factorial Bernoulli polynomials, B(n,z,t) and B'(n,r,z) which are defined in (2.1) and (3.1) below.

2. Rising Factorial Bernoulli Polynomial I: B(n,z,t)

We define a rising factorial Bernoulli polynomial I, B(n,z,t), by

$$\frac{te(z,xt)}{e(z,t)-1} = \sum_{n=0}^{\infty} B(n,z,x) \frac{t^n}{z^n}$$
(2.1)

in which e(z,x) is an analog of the exponential function:

$$e(z,x) = \sum_{n=0}^{\infty} \frac{x^n}{z^{\bar{n}}}$$
(2.2)

We can see the analogies with the ordinary exponential function and Bernoulli polynomial in that $e(1, x) = e^x$ and $B(n, 1, x) = B_n(x)$. The main result is that

$$x^{n} = \sum_{k=0}^{n} \frac{1}{k+z} \begin{cases} n \\ k \end{cases}_{z} B(n-k,z,x)$$
(2.3)

where we have used the rising binomial coefficient – type I:

$$\begin{cases} n \\ k \end{cases}_{a} = \frac{a^{\overline{n}}}{a^{\overline{k}}a^{\overline{n-k}}}$$
(2.4)

and so (2.3) is the analog of Carlitz [2]:

$$x^{n} = \sum_{k=0}^{n} \frac{1}{k+1} {n \choose k} B_{n-k}(x)$$
(2.5)

for the ordinary Bernoulli numbers. The proof of (2.3) now follows:

$$\frac{e(z,t)-1}{t} = \frac{1}{t} \sum_{n=1}^{\infty} \frac{t^n}{z^n}$$
$$= \sum_{n=1}^{\infty} \frac{t^{n-1}}{z^n}$$
$$= \sum_{n=0}^{\infty} \frac{t^n}{z^n}.$$

Thus,

$$e(z, xt) = \sum_{n=0}^{\infty} \frac{x^n t^n}{z^{\overline{n}}}$$

= $\sum_{m=0}^{\infty} \frac{t^m}{z^{\overline{m+1}}} \sum_{n=0}^{\infty} \frac{B(n, z, x)t^n}{z^{\overline{n}}}$
= $\sum_{n=0}^{\infty} \sum_{k=0}^n \frac{B(n-k, z, x)t^n}{(k+z)z^{\overline{k}} z^{\overline{n-k}}}$
= $\sum_{n=0}^{\infty} \frac{t^n}{z^{\overline{n}}} \sum_{k=0}^n \frac{1}{k+z} {n \atop k} {s \atop k} B(n-k, z, x)$

and the result follows on equating coefficients of *x*.

3. Rising Factorial Bernoulli Polynomial II: B'(N,R,Z)

From the definition of e(n,z,x) we get

$$\frac{e(n,z,t) - \frac{1}{z!}}{t} = \frac{1}{t} \left\{ \sum_{n=0}^{\infty} \frac{t^n}{(n+1)^z} - \frac{1}{z!} \right\}$$
$$= \sum_{n=1}^{\infty} \frac{t^{n-1}}{(n+1)^z}$$
$$= \sum_{n=0}^{\infty} \frac{t^n}{(n+2)^z}.$$
(3.1)

Thus,

$$e(n, z, xt) = \sum \frac{t^n x^n}{(n+1)^{\overline{z}}}$$

= $\sum_{n=0}^{\infty} \sum_{k=0}^n \frac{k(k+1)B'(n-k, z, x)}{(k+z)(k+z+1)k^{\overline{z}}(n-k+1)^{\overline{z}}}$
= $\sum_{n=0}^{\infty} \frac{t^n}{(n+1)^{\overline{z}}} \sum_{k=0}^n \frac{k(k+1)}{(k+z)(k+z+1)} \left\langle {n+1 \atop k} \right\rangle_z B'(n-k, z, x).$

in which

$$\left\langle {n \atop k} \right\rangle_z = \frac{n^{\bar{z}}}{k^{\bar{z}} (n-k)^{\bar{z}}}$$

is the rising binomial coefficient – type II. We then get

$$x^{n} = \sum_{k=0}^{n} \frac{k(k+1)}{(k+z)(k+z+1)} \left\langle {n+1 \atop k} \right\rangle_{z} B'(n-k,z,x),$$
(3.2)

as another analog of the result in (2.5) for the ordinary Bernoulli numbers,

4. Concluding Comments

When a is replaced by q in the rising binomial coefficient defined in (2.4) we have Carlitz' definition of the q-series analog of the binomial coefficient [1].

We also observe that Sylvester [8] defined the nth Fermatian of index q by

$$\underline{q}_{n} = \begin{cases} -q^{n} \underline{q}_{-n} & (n < 0) \\ 1 & (n = 0) \\ 1 + q + q^{2} + \dots + q^{n-1} & (n > 0) \end{cases}$$
(4.1)

The contrasting of the Fermatians and the q-series is not as bizarre as it might seem at first sight. Thus, as an example, the favourite Ramanujan identity of Dyson [3]

$$\sum_{n=0}^{\infty} x^{n^2+n} \frac{(1+x+x^2)(1+x^2+x^4)\dots(1+x^n+x^{2n})}{(1-x)(1-x^2)\dots(1-x^{2n+1})} = \prod_{n=1}^{\infty} \frac{(1-x^{2n})}{(1-x^n)}$$

can also be written as

$$\sum_{n=0}^{\infty} x^{n^2 + n} \prod_{m=1}^{n} \frac{\underline{x}_3^m}{(-\underline{x}_3^m)_2} = \prod_{n=1}^{\infty} \underline{x}_n.$$
(4.2)

Another illustration is provided by $u_n(x)$ [4], the recurrence relation for which can be written in the form

$$u_{n+1}(x) = 2xu_n(x) - q^{1-n} (\underline{q^2})_n u_{n-1}(x), \ n > 0,$$
(4.3)

with initial conditions $u_0(x) = 1$, $u_1(x) = 2x$, 0 < q < 1, and which in the context of special functions generalizes the Hermite polynomials in that

$$\lim_{q\to 1^-} u_n(x) = H_n(x).$$

References

- 1. Carlitz, L. *q*-Bernoulli Numbers and Polynomials. *Duke Mathematical Journal*. 16 (1949): 987-1000.
- 2. Carlitz, L. Generating Functions. The Fibonacci Quarterly. Vol.7 (1969): 359-393.
- **3.** Dyson, F. A Walk through Ramanujan's Garden. In George E Andrews *et al* (eds). *Ramanujan Revisited*. San Diego, CA: Academic Press, pp.7-28.
- 4. Ismail, Mourad. *Classical and Quantum Orthogonal Polynomials in One Variable*. Encyclopedia of Mathematics and Its Applications, 98. Cambridge: Cambridge University Press.
- 5. Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, 1958, p.3.
- 6. Riordan, J. Abel Identities and Inverse Relations. In *Combinatorial Mathematics and Its Applications*. Chapel Hill, NC: University of North Carolina Press, pp.71-92.
- 7. Shannon, A.G. Some *q*-Binomial Coefficients Formed from Rising Factorials. *Notes* on Number Theory and Discrete Mathematics. 12 (2006): 13-20.
- 8. Sylvester, J.J. *The Collected Mathematical Papers of James Joseph Sylvester*. Volume IV (1882-1897). New York: Chelsea, 1973, pp.91,93-94.