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1. Introduction 
In a previous paper [7], falling and rising factorials were utilised in the following forms. 
The falling factorial, an r-permutation of n distinct objects, is given by 
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and is such that 
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(see, for example Riordan [5]). Here we have followed Knuth’s suggestion at the 1967 
Conference on Combinatorial Mathematics and its Applications (Riordan [6]) for the ris-
ing and falling factorial coefficients. Similarly, we showed for the rising factorial of n  
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This is a recurrence relation for rn , which is an r permutation of n + r - 1 objects, and 
which is related to the Stirling numbers.  Corresponding binomial coefficients were also 
considered, namely, 
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in which rn is the falling r-factorial of n and 
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in which rn is the rising r-factorial of n. Thus 
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which is also suggested by the Gauss-Cayley form of the generalized binomial coeffi-
cient.  Here it is proposed to consider two rising factorial Bernoulli polynomials, B(n,z,t) 
and B’(n,r,z)  which are defined in (2.1) and (3.1) below. 
 

2.  Rising Factorial Bernoulli Polynomial I: B(n,z,t) 
We define a rising factorial Bernoulli polynomial I, B(n,z,t), by 
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(2.1)

 
in which e(z,x) is an analog of the exponential function: 
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We can see the analogies with the ordinary exponential function and Bernoulli polynomi-
al in that xexe =),1( and )(),1,( xBxnB n= . The main result is that  
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where we have used the rising binomial coefficient – type I: 
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and so (2.3) is the analog of Carlitz [2]: 
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for the ordinary Bernoulli numbers. The proof of (2.3) now follows: 
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Thus, 
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and the result follows on equating coefficients of x. 

 
3.  Rising Factorial Bernoulli Polynomial II: B’(N,R,Z)   

From the definition of e(n,z,x) we get 
 

∑

∑

∑

∞

=

∞

=

−

∞

=

+
=

+
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
+

=
−

0

1

1

0

.
)2(

)1(

!
1

)1(
1!

1),,(

n
z

n

n
z

n

n
z

n

n
t

n
t

zn
t

tt
z

tzne

 

(3.1)
Thus, 
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in which 
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is the rising binomial coefficient – type II.  We then get 
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as another analog of the result in (2.5) for the ordinary Bernoulli numbers, 

 
4.  Concluding Comments 

When a is replaced by q in the rising binomial coefficient defined in (2.4) we have Car-
litz’ definition of the q-series analog of the binomial coefficient [1].   
 
We also observe that Sylvester [8] defined the nth Fermatian of index q by 
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The contrasting of the Fermatians and the q-series is not as bizarre as it might seem at 
first sight.  Thus, as an example, the favourite Ramanujan identity of Dyson [3] 
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can also be written as 
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Another illustration is provided by )(xun [4], the recurrence relation for which can be 
written in the form 
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with initial conditions ,10,2)(,1)( 10 <<== qxxuxu  and which in the context of special 
functions generalizes the Hermite polynomials in that 
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