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Abstract: 
This paper considers some q-extensions of binomial coefficients formed 
from rising factorial coefficients.  Some of the results are applied to a Mö-
bius Inversion Formula and an exponential based on extensions of ideas in-
itially developed by Leonard Carlitz. 
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1. Introduction 
We shall extend the results in [5,6] to analogous function expressed in terms of 
Fermatian numbers.  We can define [1,2] the n-th reduced Fermatian number in 
terms of 
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so that 
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Accordingly, we define 

∑
∞

=

=
0

!/)(
n

n
n

z zxxE  
(1.3) 

Note that 
xexE =)(1 .  

We can also define an inverse [4] 
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We shall use these to develop a Möbius inversion formula analogous to a result of 
Carlitz [3] 

)()( tFetG t=  (1.4) 
 
in which F(t) and G(t) are power series defined below. 
 

2. Some Fermatian Power Series 
We define the (formal) powers series 
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where (formally) 
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in which 
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We can thus define analogs of other classical polynomials.  For example, we can 
define Fermatian extensions of the Hermite polynomials by :)(xH nz  
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and so, 
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3. Inversion Formulae 
We know from the Möbius Inversion Formula that  
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in which )(nμ is the Möbius function 
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It can be verified by a proof similar to the one which appears shortly and in [15] 
that (3.1) and (3.2) reduce to  
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and 
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respectively. We now establish an analog of (1.4): 
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as required. 
 

4. Conclusion 
Unless an inverse rising factorial exponential can be established it is unlikely that 
analogous relationships can be found for the rising factorial except for the trivial 
case when nn gf = . 
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