MODULAR-RING CLASS STRUCTURES OF $x^n \pm y^n$

J. V. Leyendekkers

The University of Sydney, 2006, Australia

A. G. Shannon

Warrane College, The University of New South Wales, Kensington, 1465, & RafflesKvB Institute Pty Ltd, North Sydney, NSW, 2060, Australia

Abstract

Integer structure theory is used to analyse the factors of sums and differences of two identical powers of two integers, x and y. For instance, the sum of two identical powers, m, cannot form primes when m is odd or when m is even if the powers are odd and of the form $m/2^n$. The expanded forms of the factors indicate why the structure acts against the sum ever equalling an identical power. The difference of odd powers can yield primes when x - y = 1 The difference of even powers cannot yield primes whereas the sum can when $m/2^n$ is even. However, $x^2 - y^2$ can equal a prime when x - y = 1.

1. Introduction

This paper is an extension of "two-squares" identities which go back at least to the early thirteenth century [4] or possibly earlier still [2]. Craig [1] provides a convenient summary of such identities and applies group-theoretic tools to binary quadratic decomposition. Here we build on a previous note [3], to the effect that $(x^n + y^n)$, n>1 and odd, can never be a prime since

$$x^{n} + y^{n} = (x + y) \left(x^{n-1} + y^{n-1} - \frac{xy}{x + y} \left(x^{n-2} + y^{n-2} \right) \right)$$
(1.1)
= $(x + y) f(x, y)$

nor can $(x^n - y^n)$ produce primes since

$$x^{n} - y^{n} = (x - y) \left(x^{n-1} + y^{n-1} + \frac{xy}{x - y} \left(x^{n-2} - y^{n-2} \right) \right)$$
(1.2)
= $(x - y)g(x, y)$

except in (1.2) when x=2 and y=1 or x-y=1 when primes can be formed. In the former case $(x^n - y^n)$ becomes $(2^n - 1)$ which is a Mersenne number when *n* is prime.

If the exponent, *m* say, is even and $(m/2^n)$ is odd, then on replacing *x* and *y* by x^{2^n} and y^{2^n} respectively, and *n* by $m/2^n$, we can use Equations (1.1) and (1.2) in the form

$$\left(x^{2^{n}}\right)^{m/2^{n}} + \left(y^{2^{n}}\right)^{m/2^{n}} = x^{m} + y^{m}.$$
(1.3)

Thus, with the exceptions noted, primes can only be formed from the sum of two powers, m, when m is a power of 2 such as $x^4 + y^4$ [3]. In this paper we explore the class structure of the factors of the three types of non-prime forming triples, using the modular ring Z_4 (Table 1).

2. $x^{n} + y^{n}$, *n* odd

Relationship of (x+y) *and* f(x,y)

For low prime values, when (x+y) is a prime, f(x,y) is also a prime. However the integer structure shows that this is not a general rule. For example, let n=3 and x=4 and y=19, so that from Z_4 , $x = 4r_0$ ($r_0 = 1$) and $y = 4r_3 + 3(r_3 = 4)$, thus

$$(x+y) = 4(r_0 + r_3) + 3 = 23,$$
 (2.1)

$$f(x, y) = x^{2} + y^{2} - xy$$

= $16(r_{0}^{2} + r_{3}^{2} - r_{0}r_{3}) + 12(2r_{3} - r_{0}) + 9.$ (2.2)

Row $(r_i) \downarrow$					
Class $(i) \rightarrow$	$\overline{0}_4$	$\overline{1}_4$	$\overline{2}_4$	$\overline{3}_4$	Comments
0	0	1	2	3	$N = 4r_i + i$
1	4	5	6	7	even $\overline{0}_4, \overline{2}_4$
2	8	9	10	11	$\left(N^n,N^{2n} ight)\in \overline{0}_4$
3	12	13	14	15	odd $\overline{1}_4, \overline{3}_4; N^{2n} \in \overline{1}_4$

Table 1: Rows and classes for Z_4

If f(x,y) is a prime then the right hand side of Equation (2.2) has no prime factors. However, 7 is a common factor of $(16(r_0^2 + r_3^2 - r_0r_3) + 9)$ and $(12(2r_3 - r_0))$. Obviously, the various combinations of the rows indicate, even for this small *n*, that a common factor could be easily obtained. In general, when (x+y) = nk, *k* odd,

$$x^{n} + y^{n} = n^{2}k(f(n,k,y) + y^{n-1}).$$
(2.3)

Table 2 shows some examples which illustrate how difficult a resultant of z^n would be.

n	(<i>x</i> + <i>y</i>)	$(x+y)(x^{n-1}+y^{n-1}-\frac{xy}{x+y}(x^{n-2}+y^{n-2}))$
3	3 <i>k</i>	$3^2k(3k^2-3ky+y^2)$
5	5 <i>k</i>	$5^{2}k(5^{3}k^{4}-5^{3}k^{3}y+5\times 34k^{2}y^{2}-10ky^{3}+y^{4})$
3	Nk	$Nk\left(N^2k^2 - 3Nky + 3y^2\right)$

Table 2: When $n \mid (x + y)$, then $n \mid f(x, y)$

y = Nk.

x+y=Nk,

The same applies when (x+y) = Nk with $N \neq n$ (Table 2). In this case,

$$x^{n} + y^{n} = Nk (f(N, k, y) + ny^{n-1}).$$
(2.4)

If

$$(f(N,k,y)+ny^{n-1})=(Nk)^{n-1},$$
 (2.5)

then

But

so that

$$x^{n} + y^{n} \neq \left(Nk\right)^{n}.$$
(2.6)

If

$$(f(N,k,y)+ny^{n-1})=A^n(Nk)^{n-1},$$

Then y cannot have an integer solution so that the inequation (2.6) applies again with $A^n (Nk)^{n-1}$ on the right hand side. The same argument can be applied over and over again.

Class Structure

If we take x even and y odd, then we can deduce the class of $(x^n + y^n)$ (Table 3). For n=3, when $y \in \overline{3}_4$, $(x^3 + y^3)$ can never equal a sum of squares, whereas when $y \in \overline{1}_4$, the sum of cubes can equal a sum of squares.

Number	Classes					
	x	У	<i>x</i> + <i>y</i>	$x^2 + y^2 - xy$	(x+y)f(x,y) = N	Comments
1	$\overline{2}_4$	$\overline{1}_4$	$\overline{3}_4$	$\bar{0}_4 + \bar{1}_4 - \bar{2}_4 = \bar{3}_4$	$(\bar{3}_4 \times \bar{3}_4) \in \bar{1}_4$	$N = a^2 + b^2$
2	$\overline{2}_4$	$\overline{3}_4$	$\overline{1}_4$	$\bar{0}_4 + \bar{1}_4 - \bar{2}_4 = \bar{3}_4$	$(\overline{1}_4 \times \overline{3}_4) \in \overline{3}_4$	$N \neq a^2 + b^2$
3	$\overline{0}_4$	$\overline{1}_4$	$\overline{1}_4$	$\bar{0}_4 + \bar{1}_4 - \bar{0}_4 = \bar{1}_4$	$(\bar{1}_4 \times \bar{1}_4) \in \bar{1}_4$	$N = a^2 + b^2$
4	$\overline{0}_4$	$\overline{3}_4$	$\overline{3}_4$	$\bar{0}_4 + \bar{1}_4 - \bar{0}_4 = \bar{1}_4$	$(\bar{3}_4 \times \bar{1}_4) \in \bar{3}_4$	$N \neq a^2 + b^2$

Table 3(a): Class structure in Z_4 when n=3

Number	Classes		$(x+y)(x^6+y^6)$	$xy(x^5 + y^5)$	
	x	у	a	b	N=a-b
1	$\overline{2}_4$	$\overline{1}_4$	$\overline{3}_4 \times (\overline{0}_4 + \overline{1}_4) = \overline{3}_4$	$\bar{2}_4 \times \bar{1}_4 (\bar{0}_4 + \bar{1}_4) = \bar{2}_4$	$\overline{1}_4$
2	$\overline{2}_4$	$\overline{3}_4$	$\bar{1}_4 \times \left(\bar{0}_4 + \bar{3}_4\right) = \bar{3}_4$	$\bar{2}_4 \times \bar{1}_4 \left(\bar{0}_4 + \bar{3}_4 \right) = \bar{2}_4$	$\overline{1}_4$
3	$\overline{0}_4$	Ī4	$\bar{1}_4 \times (\bar{0}_4 + \bar{1}_4) = \bar{1}_4$	$\bar{0}_4 \times \bar{1}_4 \left(\bar{0}_4 + \bar{1}_4 \right) = \bar{0}_4$	$\overline{1}_4$
4	$\overline{0}_4$	$\overline{3}_4$	$\overline{3}_4 \times (\overline{0}_4 + \overline{3}_4) = \overline{1}_4$	$\bar{0}_4 \times \bar{3}_4 \left(\bar{0}_4 + \bar{3}_4 \right) = \bar{0}_4$	$\overline{1}_4$

Table 3(b): Class structure in Z_4 when n=7

However, when n>3 the sum of the two powers always falls in Class $\overline{1}_4$ (Table 3(b)) so that the power sum equals a sum of squares. Furthermore, when n>3 and there are factors in Class $\overline{3}_4$, there must be an even number of such factors since $(\overline{3}_4 \times \overline{1}_4) \in \overline{3}_4$, $(\overline{3}_4 \times \overline{3}_4) \in \overline{1}_4$, $\overline{3} \times (\overline{3}_4 \times \overline{3}_4) \in \overline{3}_4$, and so on. In turn, this means that since such factors are to an even power, they cannot give the odd power required if $x^n + y^n = z^n$, which is consistent with Fermat's Last Theorem. The manner in which factors arise can be understood by using the class functions. Some examples for n=3 are shown in Table 4.

No*	<i>x</i> + <i>y</i>	f(x,y)	Examples
1	$4(r_1+r_2)+3\in\overline{3}_4$	$16(r_2^2 + r_2 + r_1^2 - r_1r_2)$	x = 2, y = 13:
		$-4r_2 + 3 \in \overline{3}_4$	$x\in\overline{2}_4,\ r_2=0,$
			$y \in \overline{1}_4, r_1 = 3;$
			$f((x, y) = 16 \times 9 + 3$
			$=3\times7^2$
2	$4(r_2 + r_3 + 1) + 1 \in \bar{1}_4$	$16(r_2^2 + r_2 + r_3^2 - r_2r_3)$	(a) $x=2; y=23:$
		$+4(4r_3-3r_2)+7\in\overline{3}_4$	$x \in 2_4, r_2 = 0,$
			$y \in \overline{3}_4, r_3 = 5;$
			$f(x, y) = 16 \times 25 + 4 \times 20 + 7$
			no prime factors; so prime. (b) <i>x</i> =6; <i>y</i> =11:
			$x \in \overline{2}_4, r_2 = 1,$
			_
			$y \in 3_4, r_3 = 2;$
			$f(x, y) = 16 \times 4 + 4 \times 5 + 7$
			$= 7 \times 13.$
3	$4(r_0 + r_1) + 1 \in \overline{1}_4$	$16(r_0^2 + r_1^2 - r_0r_1)$	(a) <i>x</i> =4; <i>y</i> =17:
		$+4(2r_1-r_0)+1\in\overline{1}_4$	

4	$4(r_0 + r_3) + 3 \in \bar{3}_4$	$16(r_0^2 + r_3^2 - r_2 r_3) + 4(6r_3 - 3r_0) + 9 \in \overline{1}_4$	$x \in \overline{0}_{4}, r_{0} = 1,$ $y \in \overline{1}_{4}, r_{1} = 4;$ $f(x, y) = 16 \times 13 + 28 + 1$ $= 3 \times 79.$ (b) $x=4; y=13:$ $x \in \overline{0}_{4}, r_{0} = 1,$ $y \in \overline{1}_{4}, r_{1} = 3;$ $f(x, y) = 16 \times 7 + 20 + 1$ $= 7 \times 19$ (a) $x=4; y=19:$ $x \in \overline{0}_{4}, r_{0} = 1,$ $y \in \overline{3}_{4}, r_{3} = 4;$ $f(x, y) = 16 \times 13 + 12 \times 7 + 9$ $= 7 \times 43.$ (b) $x=24; y=19:$ $x \in \overline{0}_{4}, r_{0} = 6,$
			(b) <i>x</i> =24; <i>y</i> =19:

Table 4: Formation of factors for n=3 (* from Table 2)

3. $x^n - y^n$, *n* odd

As for $x^n + y^n$, we can deduce the class of $x^n - y^n$, (Table 5).

Number	Classes				
	x	у	x-y	g(x,y)	(x-y)g(x,y)=N
1	$\overline{2}_4$	$\overline{1}_4$	$\overline{1}_4$	$\bar{0}_4 + \bar{1}_4 + \bar{2}_4 = \bar{3}_4$	$(\overline{1}_4 \times \overline{3}_4) \in \overline{3}_4$
2	$\overline{2}_4$	$\overline{3}_4$	$\overline{3}_4$	$\bar{0}_4 + \bar{1}_4 + \bar{2}_4 = \bar{3}_4$	$(\overline{3}_4 \times \overline{3}_4) \in \overline{1}_4$
3	$\overline{0}_4$	$\overline{1}_4$	$\overline{3}_4$	$\bar{0}_4 + \bar{1}_4 + \bar{0}_4 = \bar{1}_4$	$(\bar{3}_4 \times \bar{1}_4) \in \bar{3}_4$
4	$\overline{0}_4$	$\overline{3}_4$	Ī4	$\overline{0}_4 + \overline{1}_4 + \overline{0}_4 = \overline{1}_4$	$(\bar{1}_4 \times \bar{1}_4) \in \bar{1}_4$

Table 5(a): Class structure in Z_4 when n=3

When $y \in \overline{3}_4$, $(x^n - y^n) \in \overline{1}_4$ and hence equal to a sum of squares.

Number	Classes		$(x-y)(x^4+y^4)$	$xy(x^3-y^3)$	
	x	У	a	b	N=a+b
1	$\overline{2}_4$	$\overline{1}_4$	$\bar{1}_4 \times (\bar{0}_4 + \bar{1}_4) = \bar{1}_4$	$\bar{2}_4 \times \bar{1}_4 (\bar{0}_4 - \bar{1}_4) = \bar{2}_4 \times \bar{3}_4 = \bar{2}_4$	$\overline{3}_4$
2	$\overline{2}_4$	$\overline{3}_4$	$\overline{3}_4 \times (\overline{0}_4 + \overline{1}_4) = \overline{3}_4$	$\bar{2}_4 \times \bar{1}_4 (\bar{0}_4 - \bar{3}_4) = \bar{2}_4 \times \bar{1}_4 = \bar{2}_4$	$\overline{1}_4$
3	$\overline{0}_4$	$\overline{1}_4$	$\overline{3}_4 \times (\overline{0}_4 + \overline{1}_4) = \overline{3}_4$	$\bar{0}_4 \times \bar{1}_4 (\bar{0}_4 - \bar{1}_4) = \bar{0}_4 \times \bar{3}_4 = \bar{0}_4$	$\overline{3}_4$
4	$\overline{0}_4$	$\overline{3}_4$	$\bar{1}_4 \times \left(\bar{0}_4 + \bar{1}_4 \right) = \bar{1}_4$	$\bar{0}_4 \times \bar{3}_4 (\bar{0}_4 - \bar{3}_4) = \bar{0}_4 \times \bar{1}_4 = \bar{0}_4$	$\overline{1}_4$

Table 5(b): Class structure in Z_4 when n=5. (NB: $(\bar{3}_4)^{2n} \in \bar{1}_4$

Unlike $(x^n + y^n)$, the difference of the powers may fall in either $\overline{1}_4$ or $\overline{3}_4$ for all odd powers. When $x \in \overline{2}_4$, $y \in \overline{3}_4$, n = 3, the factors are both in $\overline{3}_4$ so, if identical, will produce an even power.

When $n \ge 5$, the class of $(x^n - y^n)$ and (x - y) yields the g(x,y) class. For example, when $(x - y \in \overline{1}_4)$ and the difference of powers $N \in \overline{3}_4$, then $g(x, y) \in \overline{3}_4$ because $\overline{1}_4 \times \overline{3}_4 = \overline{3}_4$. On the other hand, when $(x - y \in \overline{3}_4)$ and $N \in \overline{3}_4$, then $g(x, y) \in \overline{1}_4$. An analysis of the factor structure can be made as for $x^n + y^n$.

Since $(a-b) \neq (b-a)$ for $a \neq b$, the class structure in this case is not independent of parity and the relative magnitude of x and y. For instance, if we take x odd and y even, x > y, then the class structure is reversed (Table 5c).

Number	x	у	$x^3 - y^3$	$x^5 - y^5$
1	$\overline{1}_4$	$\overline{2}_4$	$\overline{1}_4$	$\overline{1}_4$
2	$\overline{3}_4$	$\overline{2}_4$	$\overline{3}_4$	$\overline{3}_4$
3	$\overline{1}_4$	$\overline{0}_4$	$\overline{1}_4$	$\overline{1}_4$
4	$\overline{3}_4$	$\overline{0}_4$	$\overline{3}_4$	$\overline{3}_4$

Table 5(c): Class structure in Z_4 when n=3, 5

4. $x^m \pm y^m, m/2^n$ odd

As noted above, for even indices, m, when $m/2^n$ is odd, the above comments apply since

$$x^{m} + y^{m} = \left(x^{2^{n}}\right)^{\frac{m}{2^{n}}} + \left(y^{2^{n}}\right)^{\frac{m}{2^{n}}}$$
(4.1)

so that with

$$X = x^{2^{n}}, Y = y^{2^{n}}, q = \frac{m}{2^{n}},$$

$$(x^{m} + y^{m}) = (X + Y)(X^{q-1} + Y^{q-1} - XY(X^{q-2} + Y^{q-2})/(X + Y)),$$
(4.2)

and

$$(x^{m} - y^{m}) = (X - Y)(X^{q-1} + Y^{q-1} + XY(X^{q-2} - Y^{q-2})/(X - Y)).$$

$$(4.3)$$

For example, when y=n=1, Equation (4.2) becomes

$$(x^{m}+1) = (x^{2}+1)((x^{2})^{\frac{m}{2}-1}+1-x^{2}((x^{2})^{\frac{m}{2}-2}+1)/(x^{2}+1)),$$
(4.4)

or, with *m*=70,

$$(x^{70}+1) = (x^2+1)((x^2)^{34}+1-x^2((x^2)^{33}+1)/(x^2+1)),$$
(4.5)

Consider x=2, y=1. For $2^n + 1$ the parity and class of *n* determine the right end digit (RED) of 2^n (Table 6). This information is useful when analysing $2^n + 1$ in functions of Aurifeuilian factors. For example, consider the function $2^m + 1$ and the associated Aurifeuilian factors (Table 7). Since all *m* in the first column are in class $\overline{2}_4$, the RED of $2^m + 1$ will be 5, so that 5 will always be a factor.

п	Class	RED of $2^n, 2 \in \overline{2}_4$	RED of $4^n, 4 \in \overline{0}_4$
even	$\overline{2}_4$	4	6
even	$\overline{0}_4$	6	6
odd	$\overline{1}_4$	2	4
odd	$\overline{3}_4$	8	4

$x^m + y^m$	Aurifeuillian Factors
$2^{6} + 1$	$(2^3 - 2^2 + 1)(2^3 + 2^2 + 1)$
$2^{10} + 1$	$(2^5 - 2^3 + 1)(2^5 + 2^3 + 1)$
$2^{14} + 1$	$(2^7 - 2^4 + 1)(2^7 + 2^4 + 1)$
$2^{30} + 1$	$(2^{15}-2^8+1)(2^{15}+2^8+1)$
$2^{42} + 1$	$(2^{21}-2^{11}+1)(2^{21}+2^{11}+1)$
$2^{70} + 1$	$(2^{35} - 2^{18} + 1)(2^{35} + 2^{18} + 1)$

Table 6: Right End Digits (REDs)

Table 7: Aurifeuillian Factors

The first Aurifeuillian Factor has the form $(2^s - 2^t + 1)$ and the second one has the form $(2^s + 2^t + 1)$. The REDs of these factors are formed as shown in Table 6 so that the term containing the factor 5 can easily be identified (Table 8). Compare these results with Equation (4.5)

$$2^{70} + 1 = 5\left(4^{34} + 1 - \frac{4}{5}\left(4^{33} + 1\right)\right).$$

Since 4 to an odd power always has a RED of 4 (Table 6), $(4^{33} + 1)$ always has a factor 5.

S	Class	RED	t	Class	RED	REDs	
		of 2 ^s			of 2^{t}	$(2^{s}-2^{t}+1)^{*}$	$(2^{s}+2^{t}+1)^{*}$
3	$\overline{3}_4$	8	2	$\overline{2}_4$	4	5	3
5	$\overline{1}_4$	2	3	$\overline{3}_4$	8	5	1
7	$\overline{3}_4$	8	4	$\overline{0}_4$	6	3	5
15	$\overline{3}_4$	8	8	$\overline{0}_4$	6	3	5
21	$\overline{1}_4$	2	11	$\overline{3}_4$	8	5	1
35	$\overline{3}_4$	8	18	$\overline{2}_4$	4	5	3

Table 8: REDs of Aurifeuillian Factors

5.
$$x^m - y^m, m = 2^n, n > 1$$

We have

$$\begin{aligned} x^{m} - y^{m} &= \left(x^{\frac{m}{2}} \right)^{2} - \left(y^{\frac{m}{2}} \right)^{2} \\ &= \left(x^{\frac{m}{2}} - y^{\frac{m}{2}} \right) \left(x^{\frac{m}{2}} + y^{\frac{m}{2}} \right) \end{aligned}$$
(5.1)

Obviously for a prime to be present, either factor in (5.1) must be unity. Neither is possible, however, when x, y > 0. For example, when m = 4, n = 2, we need

$$x^2 - y^2 = 1. (5.2)$$

But

$$x^{2} - y^{2} = (x - y)(x + y)$$
(5.3)

so that Equation (5.2) cannot equal 1 when x, y > 0. Hence $x^m - y^m, m = 2^n, n > 1$ cannot be a prime because, with that exponent, one can always factor it into a difference of two squares.

We have discussed $x^m + y^m$, $m = 2^n$ previously [3] and shown that primes can be formed, when the integer structure is compatible. When n = 2, many primes can be formed.

A class analysis along the lines of Table 5 will show that $(x^{2^n} - y^{2^n}) \in \overline{3}_4$ for all *n* and thus can never equal a sum of squares. However, if *x* is odd and *y* even with x > y and the same class analysis is carried out, then it will be found that now all $(x^{2^n} - y^{2^n}) \in \overline{1}_4$ and thus can equal a sum of squares.

References

- 1. Craig, Maurice. The Composition Heresies. *The Australian Mathematical Society Gazette*. Vol.33, No.4(2006), 265-272.
- 2. Dickson, L.E. *History of the Theory of Numbers. Volume 3.* New York: Chelsea, 1952.

- Leyendekkers, J.V., A.G. Shannon, Integer Structure Analysis of Primes and Composites from (x⁴ + y⁴). *Notes on Number Theory & Discrete Mathematics*. Submitted.
 Rouse Ball, W.W. *History of Mathematics*. New York: Dover, 1960.

AMS Classification Numbers: 11A41, 11A07