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Abstract 

Integer structure theory is used to analyse the factors of sums and differ-

ences of two identical powers of two integers, x and y. For instance, the 

sum of two identical powers, m, cannot form primes when m is odd or 

when m is even if the powers are odd and of the form nm 2/ .  The expand-

ed forms of the factors indicate why the structure acts against the sum ever 

equalling an identical power. The difference of odd powers can yield 

primes when x – y = 1  The difference of even powers cannot yield primes 

whereas the sum can when nm 2/ is even. However, 22 yx  can equal a 

prime when x – y = 1. 

 

 

1. Introduction 

 

This paper is an extension of “two-squares” identities which go back at least to the early 

thirteenth century [4] or possibly earlier still [2].  Craig [1] provides a convenient sum-

mary of such identities and applies group-theoretic tools to binary quadratic decomposi-

tion.  Here we build on a previous note [3], to the effect that  ,nn yx   n>1 and odd, can 

never be a prime since 
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(1.1) 

nor can  nn yx  produce primes since 
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(1.2) 

 

except in (1.2) when x=2 and y=1 or x-y=1 when primes can be formed.  In the former 

case  nn yx  becomes  12 n which is a Mersenne number when n is prime. 
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 If the exponent, m say, is even and  nm 2/ is odd, then on replacing x and y by 
n

x2 and 
n

y 2 respectively, and n by nm 2/ , we can use Equations (1.1) and (1.2) in the 

form 
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(1.3) 

 

Thus, with the exceptions noted, primes can only be formed from the sum of two powers, 

m, when m is a power of 2 such as 44 yx  [3].  In this paper we explore the class struc-

ture of the factors of the three types of non-prime forming triples, using the modular ring 

4Z (Table 1). 

 

 

2. nyx nn , odd 

 

Relationship of (x+y) and f(x,y) 

For low prime values, when (x+y) is a prime, f(x,y) is also a prime.  However the integer 

structure shows that this is not a general rule.  For example, let n=3 and x=4 and y=19, so 

that from )1(4, 004  rrxZ and )4(34 33  rry , thus  

)( yx     ,2334 30  rr  (2.1) 
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(2.2) 

 

Row  ir ↓ 

Class (i)→ 

 

40  

 

41  

 

42  

 

43  

 

Comments 

0 0 1 2 3 irN i  4  

1 4 5 6 7 even 44 2,0  

2 8 9 10 11   4
2 0, nn NN  

3 12 13 14 15 odd 4
2

44 1;3,1 nN  

 

Table 1: Rows and classes for 4Z  

 

If f(x,y) is a prime then the right hand side of Equation (2.2) has no prime factors.  

However, 7 is a common factor of   916 30

2

3

2

0  rrrr and   03212 rr  . Obviously, 

the various combinations of the rows indicate, even for this small n, that a common factor 

could be easily obtained. In general, when (x+y) = nk, k odd, 

 

  .,, 12  nnn yyknfknyx  (2.3) 

 

Table 2 shows some examples which illustrate how difficult a resultant of nz  would be.   
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n (x+y)     2211 



  nn

yx

xynn yxyxyx  

3 3k  222 333 ykykk   

5 5k  432233432 10345555 ykyykykkk   

3 Nk  222 33 yNkykNNk   

 

Table 2: When  yxn | , then  yxfn ,|  

 

The same applies when (x+y) = Nk with nN  (Table 2).  In this case,  

 

  .,, 1 nnn nyykNfNkyx  (2.4) 

If 

     ,,,
11  

nn NknyykNf  (2.5) 

then 

y = Nk. 

But 

x+y = Nk, 

so that  

  .
nnn Nkyx   (2.6) 

If 

     ,,,
11  

nnn NkAnyykNf   

 

Then y cannot have an integer solution so that the inequation (2.6) applies again with 

  1nn NkA  on the right hand side.  The same argument can be applied over and over 

again. 

 

Class Structure 

If we take x even and y odd, then we can deduce the class of  nn yx  (Table 3).  For 

n=3, when  33
4 ,3 yxy  can never equal a sum of squares, whereas when 41y , the 

sum of cubes can equal a sum of squares. 

 

Number Classes     

 x y x+y xyyx  22       Nyxfyx  ,  Comments 

1 
42  41  43  4444 3210     444 133   

22 baN   

2 
42  43  41  4444 3210     444 331   

22 baN   

3 
40  41  41  4444 1010     444 111   

22 baN   

4 
40  43  43  4444 1010     444 313   

22 baN   

 

Table 3(a): Class structure in 4Z when n=3 
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Number Classes   66 yxyx    55 yxxy    

 x y a b N=a-b 

1 
42  41    4444 3103     44444 21012   41  

2 
42  43    4444 3301     44444 23012   41  

3 
40  41    4444 1101     44444 01010   41  

4 
40  43    4444 1303     44444 03030   41  

 

Table 3(b): Class structure in 4Z when n=7 

 

However, when n>3 the sum of the two powers always falls in Class 41 (Table 

3(b)) so that the power sum equals a sum of squares. Furthermore, when n>3 and there 

are factors in Class 43 , there must be an even number of such factors since   444 313  , 

  444 133  ,   444 3333  , and so on.  In turn, this means that since such factors are 

to an even power, they cannot give the odd power required if nnn zyx  , which is con-

sistent with Fermat’s Last Theorem.  The manner in which factors arise can be under-

stood by using the class functions.  Some examples for n=3 are shown in Table 4. 

 

No*  x+y f(x,y) Examples 
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(a) x=2; y=23: 
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no prime factors; so prime. 

(b) x=6; y=11: 
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(a) x=4; y=17: 
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 (b) x=4; y=13: 
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(a) x=4; y=19: 
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 (b) x=24; y=19: 
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Table 4: Formation of factors for n=3 (* from Table 2) 

 

 

3. ,nn yx  n odd 

 

As for ,nn yx  we can deduce the class of ,nn yx   (Table 5). 

 

Number Classes    

 x y x-y g(x,y)      Nyxgyx  ,  

1 
42  41  41  4444 3210     444 331   

2 
42  43  43  4444 3210     444 133   

3 
40  41  43  4444 1010     444 313   

4 
40  43  41  4444 1010     444 111   

 

Table 5(a): Class structure in 4Z when n=3 

 

When   44 1,3  nn yxy and hence equal to a sum of squares. 
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Number Classes   44 yxyx    33 yxxy    

 x y a b N=a+b 

1 
42  41    4444 1101     4444444 2321012   43  

2 
42  43    4444 3103     4444444 2123012   41  

3 
40  41    4444 3103     4444444 0301010   43  

4 
40  43    4444 1101     4444444 0103030   41  

 

Table 5(b): Class structure in 4Z when n=5. (NB:   4

2

4 13 
n

 

 

Unlike  nn yx  , the difference of the powers may fall in either 41 or 43 for all 

odd powers.  When ,3,3,2 44  nyx the factors are both in 43 so, if identical, will 

produce an even power. 

 When ,5n the class of  nn yx  and  yx  yields the g(x,y) class.  For exam-

ple, when  41 yx and the difference of powers 43N , then   43, yxg be-

cause 444 331  . On the other hand, when  43 yx  and 43N , then   41, yxg . An 

analysis of the factor structure can be made as for nn yx  . 

 Since    abba  for ba  , the class structure in this case is not independent 

of parity and the relative magnitude of x and y. For instance, if we take x odd and y even, 

x>y, then the class structure is reversed (Table 5c). 

 

Number x y 33 yx   
55 yx   

1 
41  42  41  41  

2 
43  42  43  43  

3 
41  40  41  41  

4 
43  40  43  43  

 

Table 5(c): Class structure in 4Z when n=3, 5 

 

 

4. 
nmm myx 2/, odd 

 

As noted above, for even indices, m, when nm 2/ is odd, the above comments apply since 

 

    n

m
n

n

m
n

yxyx mm 22 22   
(4.1) 

so that with  

,,,
2

22
n

nn
mqyYxX    

        YXYXXYYXYXyx qqqqmm   /2211 , (4.2) 

and 
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        YXYXXYYXYXyx qqqqmm   /2211 . (4.3) 

 

For example, when y=n=1, Equation (4.2) becomes 

         













 


1/1111 2222122 22 xxxxxx

mm
m , 

(4.4) 

or, with m=70, 

          1/1111 23322342270  xxxxxx , (4.5) 

 

Consider x=2, y=1. For 12 n the parity and class of n determine the right end digit 

(RED) of n2 (Table 6).  This information is useful when analysing 12 n  in functions of 

Aurifeuilian factors.  For example, consider the function 12 m and the associated Au-

rifeuilian factors (Table 7). Since all m in the first column are in class ,24 the RED of 

12 m will be 5, so that 5 will always be a factor. 

 

n Class RED of 422,2 n
 RED of 404,4 n

 

even 
42  4 6 

even 
40  6 6 

odd 
41  2 4 

odd 
43  8 4 

 

Table 6: Right End Digits (REDs) 

 
mm yx   Aurifeuillian Factors 

126     122122 2323   

1210     122122 3535   

1214     122122 4747   

1230     122122 815815   

1242     122122 11211121   

1270     122122 18351835   

 

Table 7: Aurifeuillian Factors 

 

The first Aurifeuillian Factor has the form  122  ts and the second one has the form 

 122  ts . The REDs of these factors are formed as shown in Table 6 so that the term 

containing the factor 5 can easily be identified (Table 8).  Compare these results with 

Equation (4.5) 

  1414512 33

5
43470  . 

 

Since 4 to an odd power always has a RED of 4 (Table 6),  1433  always has a factor 5. 
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s Class RED  t Class RED  REDs 

  of 
s2    of 

t2   *122  ts
  *122  ts

 

3 
43  8 2 

42  4 5 3 

5 
41  2 3 

43  8 5 1 

7 
43  8 4 

40  6 3 5 

15 
43  8 8 

40  6 3 5 

21 
41  2 11 

43  8 5 1 

35 
43  8 18 

42  4 5 3 

 

Table 8: REDs of Aurifeuillian Factors 

 

 

5. 1,2,  nmyx nmm
 

 

We have 
mm yx   

=    22
22

mm

yx   

  .2222

mmmm

yxyx   

 

 

(5.1) 

Obviously for a prime to be present, either factor in (5.1) must be unity. Neither is possi-

ble, however, when x, y > 0.  For example, when m = 4, n = 2, we need 

 
22 yx   =1. (5.2) 

But 
22 yx   =(x - y)(x + y) (5.3) 

 

so that Equation (5.2) cannot equal 1 when x, y > 0.  Hence 1,2,  nmyx nmm cannot 

be a prime because, with that exponent, one can always factor it into a difference of two 

squares. 

 We have discussed 
nmm myx 2,  previously [3] and shown that primes can be 

formed, when the integer structure is compatible.  When n = 2, many primes can be 

formed. 

 A class analysis along the lines of Table 5 will show that   4
22 3

nn

yx for all n 

and thus can never equal a sum of squares.  However, if x is odd and y even with x > y 

and the same class analysis is carried out, then it will be found that now all 

  4
22 1

nn

yx and thus can equal a sum of squares. 
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