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1. Introduction 
 

In a previous paper [6], falling and rising factorials were utilised in the following forms. 
The falling factorial, an r-permutation of n distinct objects, is given by 
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and is such that 
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(see, for example Riordan [5]). Similarly, we showed for the rising factorial of n  
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This is a recurrence relation for rn , which is an r permutation of n + r - 1 objects, and 
which is related to the Stirling numbers.  Corresponding binomial coefficients were also 
considered, namely, 



 

 26

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

 

r

r

r
n

rrrr
rnnn

=

+−−
+−−

=
)1)...(1(
)1)...(1(

 

(1.5)
in which rn is the falling r-factorial of n and 
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in which rn is the rising r-factorial of n. Thus 
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which is also suggested by the Gauss-Cayley form of the generalized binomial coeffi-
cient.  Here it is proposed to consider properties of another rising binomial coefficient 
defined by 
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The properties to be developed are analogues of some classical number theory results. 
 
 

2. Saalschutz’ Theorem 
 

Carlitz [2] used the formula of Saalschutz 
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where 
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in order to prove some of Macmahon’s results [4] and Dixon’s theorem 
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Carlitz also used the q-analogue of Saalschutz’ theorem to give an elegant proof of an 
identity due to Wright [7]. 
 If we let b = n – 1, then the rising binomial analogue of Saalschutz formula be-
comes 
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Proof:  If b = n – 1, then c + d = -n + a + b + 1 implies that a = c + d, and  
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since 
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from the definition of the rising factorial (1.3). On the other side of the equation we have 
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if the factor ( ) ( )nn nacnac 12/12 +−−+−− is used. 
 Carlitz proved Saalschutz’ formula by induction.  At this stage let us replace c by 
c-n, and (2.2) becomes 
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From this we get 
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in which we have used 
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The double sum then equals 
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Thus, 
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where F denotes the hypergeometric function.  It is customary to prove this by making 
use of the differential equation of the second order satisfied by );;,( xcbaF . Some results 
for these type 2 rising binomial coefficients now follow.  The first three follow easily 
from their respective definitions. 
 
 

3. Rising binomial results 
 

);,;( xbabaF − !0 r
x

b
a r

r r
∑
∞

=

= . (3.1)

ak
n

−
−

,!)1( a
ak

k
k

an
k
na

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  

(3.2)

n
rn + ( )

.
1

1
!

1

r

r

r

n
r

n
n

+
=

+
=

 

(3.3)

Theorem: 

aa k
n

k
n

1
11

−
−

+
− ( ) ( )( )

( )( )( ) .
111

121 2

−−−−+
=+−−−−

=
knkan

annaknkn
k
n

a

 
 

(3.4)

 
( ) ( ) ( )

.
)1)(1)(1(

)22222)(1(

)1)(1)(1)(1(
)1)(1()1)(1(

)2)...(1)()(2)...(1(
)2)...(1()1(

)1)...(1)()(2)...(1()1(
)2)...(1()1(

)2)...()(1)(1)...(1(
2...11

2

ak
n

knkan
annaknkn

aknknakk
aknkknak

aknknknakkk
annnn

aknknknakkkk
annnn

aknknknakkk
annnn

−−−−+
++−−−−

=

−+−−−−+−
−+−−+−−−+

+

−+−+−−−++
−++−

=

−+−+−−−++−
−++−

+

−+−−−−−++
−++−

=

 

■
Another fairly simple result is 
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and the result follows since 
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4. Concluding Comments 
 

Since 
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= , this is not a straightforward generalization of the ordinary binomi-

al coefficient. However, Jordan [3, pp.70 ff.] dealt with generalized binomial coefficients 
of the form 
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  It would be of interest to extend these to rising factorial Jordan coef-

ficients defined by 

han
x

⎭
⎬
⎫

⎩
⎨
⎧  ,

))...(2)((
))...(2)((
hnhxhahahaa

hxhahahaa
−−+++

−+++
=  (4.2)

 
for example, and to investigate their properties. 
 
Carlitz’ note on a theorem of Glaisher [1] may provide a means to investigate congruenc-
es for rising factorials. For 
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Glaisher proved that  
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Carlitz extended this to  
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where rB  is a Bernoulli number. 
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