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Abstract 

 This paper establishes and characterizes the theorem on rhotrix exponent rule, and 
presents the theory to stimulate systematization of expressing some special series and 
polynomial equations in terms of the relatively new method of representing arrays of real 
numbers.  

 
 

1. Introduction 
 
The theorem on rhotrix exponent rule was first proposed without proof in [1] as part of 

a note on enrichment exercises through extension to rhotrices. The concept of rhotrices, a 
new method of representing arrays of real numbers was introduced in [2] as an extension of 
ideas on matrix-tertions and matrix-noitrets presented in [3] for mathematical enrichment.  

It was noted concerning the multiplicative operation (o) defined in [2] that 
multiplication of rhotrices could be defined in many ways. Following this, an alternative 
method for multiplication of rhotrices based on its rows and columns vectors was proposed 
in [4]. The method established some relationships between rhotrices and matrices through 
an isomorphism. 

 Therefore, two methods for multiplication of rhotrices are presently available in the 
literature. Each method provides enabling environment to explore the usefulness of 
rhotrices as an applicable tool for creation of abstract structures [1] and enrichment of 
matrix theory [4]. 

In this paper, we adopt the multiplication in [2] to propose the application of rhotrices 
as an instrument for expressions of some special series and polynomial equations, after 
establishing the rhotrix exponent rule[1, Theorem 5] and characterizing the exponent laws 
of multiplication. In addition, we also introduce the definition of a division operator for 
expressing two rhotrices in quotient form, provided the heart of rhotrix in the denominator 
is nonzero. This division operator allows series of terms in rhotrices, whose sum 
approaches a finite value as the number of terms is increased indefinitely, to converge to its 
sum to infinity. 

It is noteworthy to mention that for the purpose of economy in size of this paper, 
rhotrices of dimension three, considered to be the base rhotrices will be used to present our 
work. However, all the results stated in this paper hold same for high dimensional 
rhotrices. 
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 Definition. If R and S are rhotrices of the same size then we define the quotient rhotrix  
S
R  

by  
1−= RoS

S
R , provided h(S) ≠0.                   (1.1) 

 
 

2. The rhotrix exponent rule 
 
We record the following theorem from [1]: 
Theorem 2.1.[1, Theorem 5]. (Rhotrix exponent rule). Let R be a rhotrix as defined in [1]. 
Then for any integer values of m,  

me
mdRhmb

ma
RhR mm )())(( 1−=    (2.1) 

 
In particular, (i) 0R  is the identity of R and (ii) 1−R  is the inverse of R. 
 
This theorem which was not proved in [1] will be established in this paper as follows: 
 
Proof: We shall establish this theorem using the principle of mathematical induction.  

First, we consider the case for positive integer values of m. The result is certainly true for 
m=1.Now suppose it is true for m=k, so that 

ke
kdRhkb

ka
RhR kk )())(( 1−=  

Then we have 

e
dRhb

a

ke
kdRhkb

ka
RhRRR kKk )()())(( 111 −+ ==  

 

ek
dkRhbk
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RhR kk

)1(
)1()()1(

)1(
))((1

+
++

+
=⇒ +  

Thus, the theorem holds for the power )1( +k , and so it is true for any positive integer. 
Next, if m is a negative integer, write km −= , so that k is a positive integer. Then by the 
definition of quotient rhotrix in section 1,  we have 
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Provided, 0)( ≠Rh . Therefore, the theorem holds for all negative values of m. 
 

Finally, if  0=m   we have: 
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kdRhkb

ka
Rh
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kdRhkb

ka
RhRRRR kkkkkk

−
−−

−
=== −−−−− )())(()())(( 110  
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−
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−
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0

010
0

0 =⇒ R          

Thus, the theorem holds for the power 0=m .Hence, the theorem is true for all integer values 
of m. 

 
As a corollary to the theorem on rhotrix exponent rule, we have the following: 
 

Corollary  2.2. If  0=m  and 1−=m  in theorem 2.1 then   
(i) 0R  is the identity of rhotrix R  and 
(ii) 1−R  is the inverse of rhotrix R respectively. 

 
Proof. (i)  If   0=m    in theorem 2.1, we have: 

 

0
010

0
0 =R  

 
Therefore, RRRRR == 00  
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Hence, 0R  is the identity of rhotrix R. 
 
(ii) If 1−=m  in theorem 2.1, we have: 

e
dRhb

a

Rh
e

dRhb
a

RhR )(
))((
1)())(( 2

21 −
−

=
−

−−
−

= −−  

 
Therefore,  IRRRR == −− 11  
Thus, 1−R   is the inverse of rhotrix R. 

 
The following corollary is obvious: 

Corollary 2.3. If R is a unit heart rhotrix then we have for any integer values of m,  

me
mdmb

ma
Rm 1=  

 
Proof. Substituting 1)( =Rh    in equation (2.1), then the result follows. 

 
Properties of the rhotrix exponent rule: If m and n are integers, then for any real rhotrix R 

 
(a) nmnm RRR +=  
 

(b) 0)(,, ≠= − RhprovidedR
R
R nm

n

m

 

 

(c) ( ) n
m

nm RR =
1

   
 
(d) ( ) mnnm RR =         
 
(e) ( ) mmm RkkR =    (Where k is a scalar) 
 
(f) IR =0     (Where I is the identity of R) 
 

(g) 0)(,,11 ≠== −− RhprovidedRI
R
IR   

 
(h) 0=mR  (or zero rhotrix), provided 0)( =Rh  and m≥2 
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3. Some special series in terms of rhotrices 

 
The rhotrix exponent rule and its above properties enables expression of algebraic series 
and expansion in terms of rhotrices. 

Arithmetic series in terms of rhotrices: Let   
e

dRhb
a

R )(=    and    
j

iDhg
f

D )(=     

be any real rhotrices of the same size. Consider the series nS  defined in terms of rhotrices 
R and D as follows: 

[ ]∑
=

−+=
n

k
n DnRS

1
)1(  

 
Obviously, nS   is an arithmetic progression having rhotrices R and D, respectively, as its 
first term and common difference. Now, we can apply the method in [5] to obtain the nth 
sum as follows: 
 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−+=−+=

j
iDhg

f
n

e
dRhb

a
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2

)1(2
2

 

 
 

        

2
)1(2

2
)1(2

2
)()1()(2

2
)1(2

2
)1(2

jnnne

innndDhnnRnhgnnnb

fnnna

Sn

−+

−+−+−+

−+

=⇒             (3.1)

  
 

For example, using equation (3.1), the sum of the first twenty terms of the following 
arithmetic series: 
 

−−−−+−+−+−+−=
6

1341
9

4
910

7

2
521

5

0
152

3

nS  

 

with first term, 
0

152
3

−=R  and common difference, 
2

431
2
−=D  is given by: 
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380
780470150

440

20 −=S  

 
Remark 1. This is the same as separating each term of the series and summing individually. 
 

Analogously, we can now have the following: 
 
Geometric series in terms of rhotrices: Let us consider a geometric series in terms of real 

rhotrices
e

dRhb
a

R )(=  and 
j

iThg
f

T )(=  as follows: 

 

           ∑
=

−=
n

k

k
n TRU

1

1                                                                (3.2) 

 
Obviously, R and T denote, respectively, the first term and common ratio of nU . Now, 
using the method in [5], we obtain by computation the nth sum:  
 

                     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
TI

TIRU
n

n                                                                       (3.3) 

 
                     ( ) ( ){ } 1)(,,1 ≠−−=⇒ − ThprovidedTITIRU n

n                    (3.4) 
 
Remark 2. If 1)( =Th , then the quotient rhotrix within the bracket on the right hand side of 
equation (3.3) becomes undefined, because of the singularity of expression )( TI − , see 
equation (1.1) in the definition of quotient rhotrix. It is also necessary to note that the 
dimension of identity rhotrix I correspond to that of rhotrices R and T in equation (3.4).  
 
For instance, the sum of the first tenth terms of the geometric series with first term 

2
143

5
−=R    and common ratio    

3
124

0

−
=T  is given by  

 
 

     ( ) ( ){ }
47118

17411409262483
5115

110
10

1

1
10

−
=−−== −

=

−∑ TITIRTRU
k

k  
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    Theorem3.1. Let 
e

dRhb
a

R )(=  be a non-unit heart rhotrix then the finite series  
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∑
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provided, .1)( ≠Rh  
 
 

Proof: Given the rhotrix
e

dRhb
a

R )(=   such that  1)( ≠Rh . 

Let 

                   
1

1

−

=
∑=

kn

k
n RG                                              (3.5) 

Multiplying equation (3.5) by rhotrix R and applying the rhotrix exponent properties in 
section 2 above to get: 

                    
kn

k
n RGR ∑

=

=
1

                                 (3.6) 

Subtracting (3.6) from (3.5), all the terms cancels out except for two, we obtain 
 
                             n

nn RIGRG −=−  
 

 
 

 

                        
RI

RIG
n

n −
−

=⇒              Provided,   IR ≠                               (3.7) 

          
                       ( ) ( ) 1−−−=⇒ RIRIG n

n      Provided, 1)( ≠Rh                        (3.8) 
 
Substituting the expressions for rhotrices I and R in equation (3.8): 
 

n
n RIRIG −=−⇒ )(
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2
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1
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Hence, 

e

d
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RhRhn

Rhb

a
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n
n
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n

n
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⎪
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⎠
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−
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⎬
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1
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Provided, .1)( ≠Rh  
 

Remark 3. If  1)( =Rh  in theorem 2, then the nth partial sum of the finite series is an 
undefined quotient rhotrix, obtainable by substituting 1)( =Rh  in the expression of R in 
equation (3.7). 
 

       Corollary 3.2. If  0)( =Rh  then 
e

db
a

e
dRhb

a k

n

k
1)(

1

1
=

−

=
∑  

 

         Proof.  Let
e

dRhb
a

R )(= , and let  

                                      13210
1

1

−
−

=

+−−−++++== ∑ n
kn

k
n RRRRRRG  

 
Since   0)( =Rh , it follows from the rhotrix exponent property (h) in section 2 that any term in 

nG  having index ≥2 becomes zero rhotrix. Thus, 
 

                                  
e

db
a

e
db

a
RRGn 10

0
010

0
10 =+=+=  
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Theorem 3.3. Let  
e

dRhb
a

R )(=   be a rhotrix such that 1)(0 << Rh  then the infinite 

series  

                     =
−∞

=
∑

1

1

k

k

R
e

dRhb
a

Rh
)(1

))(1(
1

2 −
−

         

        Proof.   Let us rewrite the infinite series ∑
∞

=

−

1

1

k

kR  as ⎟
⎠

⎞
⎜
⎝

⎛∑
=

−

∞→

n

k

k

n
RLim

1

1 . Now, using 

equation (3.8), we have: 
  

                          ⎟
⎠

⎞
⎜
⎝

⎛∑
=

−

∞→

n

k

k

n
RLim

1

1 = ( ) ( ){ }1lim −

∞→
−− RIRI n

n
                                     (3.9)          

 Since it was given that 1)(0 << Rh , then we can apply the corollary in [2] on the limit in 
equation (3.9) to get: 

 

( ) ( ){ } ( ) ( ){ }
1

11

1

1 )(1
0

010
0

0lim

−

−−

∞→
=

−

∞→

−
−−
−

=−−=−−=⎟
⎠

⎞
⎜
⎝

⎛∑
d

eRhb
a

RIIRIRIRLim n

n

n

k

k

n
 

 
on substituting the expressions for I and R. 
 
Hence, 

e
dRhb

a

Rh
R

k

k )(1
))(1(

1
2

1

1 −
−

=∑
∞

=

− , provided   .1)(0 << Rh  

 

Proposition 3.4. If 1)( −=Th and Ζ∈ 2n   in the finite series ∑
=

−=
n

k

k
n TRS

1

1 then nS is 

singular. 
 

Proof.  To establish this result, it is sufficient for us to show that the heart of the nth partial 
sum of the series is equal to zero (i.e.  ( ) 0=nSh ) with the constraints conditions. 

 Suppose R and T , respectively, are
e

dRhb
a

R )(=  and    
j

iThg
f

T )(=  

in the geometric series  ∑
=

−=
n

k

k
n TRS

1

1 . Using equation (3.4), we have 
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                               ( ) ( ){ }1−−−= TITIRS n

n  
Substituting the expressions for R,T and I, 
 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−
−−−

−

−
−−−

−

=⇒

−

−−−

−

−

−−

−

2

212

2

1

11

1

))(1(
))(1())(1())(1(

))(1(

))((
))(())((1))((

))((

)(

Thj
ThiThThg

Thf

Thnj
ThniThThng

Thnf

e
dRhb

a
S

n

nnn

n

n                         (3.10) 

 
Therefore, substituting 1)( −=Th  in equation (3.10) and taking cognizance of  Ζ∈ 2n  
                            
 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=⇒
−

−−−

−

j
ig

f

nj
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e
dRhb

a
Sn

2

212

2

2
222

2
0)(  

 
By associativity of multiplicative operation )( , it follows that   
 

nj
ning

nf
RhSn 0
2

)(
=  

 
( ) 0=⇒ nSh  

 
Hence, nS is a singular rhotrix provided ,1)( −=Th  and Ζ∈ 2n . 
 

 Theorem 3.5. Let 
e

dRhb
a

R )(=  be non-zero and non-unit heart rhotrix then the finite 

series  

( ) 111
1

1
)( −++

−

=

−−=⎟
⎠
⎞

⎜
⎝
⎛∑ nnn

kn

k
RRRR

R
I

      Provided { }.1,0)( −ℜ∈Rh  
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     Proof. Let 
1

1

−

=
∑ ⎟

⎠
⎞

⎜
⎝
⎛=

kn

k
n R

IG                                                                         (3.11) 

                                                    

Multiplying equation (3.11) by rhotrix 
R
I  and applying the rhotrix exponent properties in 

section 2 above to get: 

                    
1

1

−

=
∑ ⎟

⎠
⎞

⎜
⎝
⎛=

kn

k
n R

IG
R
I                        (3.12) 

Subtracting (3.12) from (3.11), all the terms cancels out except for two, we obtain 
 
                                                               

nn

n

n

n

n

n

n

n RR
RR

IR
R

R
IR

R
IR

R
IR

R
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R
II

G
−
−

=⎟
⎠
⎞

⎜
⎝
⎛

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠
⎞

⎜
⎝
⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟
⎠
⎞

⎜
⎝
⎛−

⎟
⎠
⎞

⎜
⎝
⎛−

= +

+−

1

11

   

    
( ) ( ) { }1,0)(,,111 −ℜ∈−−=⇒

−++ RhprovidedRRRRG nnn
n  

          
Remark 4. If 0)( =Rh , the finite series in theorem 3.5 becomes undefined.                     

Theorem 3.6. Let 
e

dRhb
a

R )(=  be non-zero and non-unit heart rhotrix then the infinite 

series  

IR
R

R
I k

k −
=⎟

⎠
⎞

⎜
⎝
⎛

−∞

=
∑

1

1
    provided 1)( >Rh .  

 
 Proof. Let us rewrite the given infinite series as follows: 
 

   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛

−

=
∞→

−∞

=
∑∑

1

1

1

1
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kn

kn

k

k R
I

R
I

 

      
Using the result in theorem 3.5 and the rhotrix exponent properties in section 2, we have: 
    

( ){ }111
1

1

1

1
)(limlim −++

∞→

−

=
∞→

−∞

=

−−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ ∑∑ nnn

n

kn

kn

k

k
RRRR

R
I

R
I
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                                        ( ) ( )
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)(limlim
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⎠
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⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛

−
=⎟

⎠
⎞

⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛

−
=

⎭
⎬
⎫

⎩
⎨
⎧

−
−

=
⎭
⎬
⎫

⎩
⎨
⎧

−
−

=
⎭
⎬
⎫

⎩
⎨
⎧

−
−

=

−

∞→

−

∞→

−

∞→+

+

∞→

Rhprovided
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R
IR

R
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RR
IR

R
IR

R
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IRR
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RR
RR

n

n

n

nn

nn

nnn

n
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Binomial series for rhotrix of positive exponent: The theorem on Binomial expansion in [5] 
can be extended to exponent rhotrices as follows: If P and Q are any two rhotrices of the same 
size then for any +Ζ∈n  

[ ] ( ) ( ) ( )
!r)!1n(

!nC,where,Q...QPCQPCQPCPQP r
nn33n

3
n22n

2
n1n

1
nnn

−
=+++++=+ −−−

 
The Binomial theorem enable us to perceive that any rhotrix of positive exponent n can be 
expressed in terms of two invertible rhotrices P and Q such that nn QPR )( += .  
 
For instance, if 

n

n

e
dRhb

a
R )(=  

  then we can rewrite  
 

n

n

e
dRhb

a
R

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−++=

0
010

0
)1(1)(  

So that by Binomial theorem 
 

0
010

0
)1(1)(

!3
)2)(1(1)(

!2
)1(

1)(1)(
0

010
0

)1(1)(

32

1

n

nn

nnn

e
dRhb

a
nnn

e
dRhb

a
nn

e
dRhb

a
n

e
dRhb

a

e
dRhb

a

−+−−−−−++
−−

−+
−

+

+−+=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−++

−−

−

         

(3.13) 
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Now, if we denote
e

dRhb
a

1)( +=Δ  in equation (3.13), then it follows that 

 

InnnnnnR nnnnnn )1(
!3

)2)(1(
!2

)1( 321 −+−−−−−−−+Δ
−−

−Δ
−

+Δ−Δ= −−−  

  
is a Binomial series for .nR  Where I is the identity of rhotrix R.  
                               
 

4. The rhotrix polynomial equations 
         
    Polynomial equations can be defined over variable(s) and coefficients which are themselves 
rhotrices. For instance if A and B are real rhotrices of the same size then the equations and  

BAX =+   and   DYC =    have unique solutions  ABX −=  and   1−= CDY   
respectively, provided  .0)( ≠Ch  
 
Theorem 4.1. Let A, B and C be non-singular rhotrices of the same size such that  
[ ] 0)()(4)( 2 ≥− ChAhBh then there exist non-singular rhotrix X satisfying the polynomial 
equation 
 

02 =++ CXBXA . 
 

Proof.  Let 

5

42

1

)(
a

aAha
a

A = ,  

5

42

1

)(
b

bBhb
b

B = , and    

5

42

1

)(
c

cChc
c

C =  in the given 

polynomial equation  
                                       02 =++ CXBXA  (4.1) 
 
Then we need to find two values for the rhotrix   

                                        

5

42

1

)(
x

xXhx
x

X =   

satisfying the quadratic polynomial equation (4.1). 
 
 Now, if we rewrite equation (4.1) as 
 

0
000

0
)()()()()(

5

42

1

5

42

1

5

42

1
2

5

42

1

5

42

1

=++
c

cChc
c

x
xXhx

x

b
bBhb

b

x
xXhx

x

a
aAha

a
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0

000

0

)()(
)()(2

))((
)()(

)()(2
))((

)()()(
))()((

)()(
)()(2

))((
)()(

)()(2
))((

555

5

2
5

444

4

2
42

222

2

2
2

111

1

2
1

=

+++
+

+++
+

++
+++

+

+++
+

⇒

cBhxXhb
xXhAh

Xha
cBhxXhb

xXhAh
Xha

ChXhBh
XhAh

cBhxXhb
xXhAh

Xha
cBhxXhb

xXhAh
Xha

  (4.2) 

From equation (4.2), we have the following simultaneous equations: 
 

0)()()()(2))(( 1111
2

1 =++++ cBhxXhbxXhAhXha  (4.3) 
0)()()()(2))(( 2222

2
2 =++++ cBhxXhbxXhAhXha  (4.4) 

0)()()())()(( 2 =++ ChXhBhXhAh  (4.5) 
0)()()()(2))(( 4444

2
4 =++++ cBhxXhbxXhAhXha  (4.6) 

0)()()()(2))(( 5555
2

5 =++++ cBhxXhbxXhAhXha  (4.7) 
 
From equation (4.5), we have a quadratic equation in terms of h(X). Therefore, the two roots 
of  h(X) are: 
 

)(2
)()(4))(()(

)(
2

Ah
ChAhBhBh

Xh
−+−

=  (4.8) 

or 
 

)(2
)()(4))(()(

)(
2

Ah
ChAhBhBh

Xh
−−−

=                                                        (4.9) 

 
Note that 0)( ≠Ah   and   0)()(4))(( 2 ≥− BhAhBh . 
Now, from equation (4.3), we have 

)()()(2
)())(( 11

2
1

1 BhXhAh
cXhbXha

x
+

++
−=  (4.10) 

Similarly, from equations (4.4), (4.6) and (4.7) we have respectively 
 

)()()(2
)())(( 22

2
2

2 BhXhAh
cXhbXhax

+
++

−=  (4.11) 

)()()(2
)())(( 44

2
4

4 BhXhAh
cXhbXhax

+
++

−=    (4.12) 
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and 

)()()(2
)())(( 55

2
5

5 BhXhAh
cXhbXha

x
+

++
−=  (4.13) 

 
Therefore, by substituting equation (4.8) in equations (4.10), (4.11), (4.12) and (4.13) then we 
obtain the first value of rhotrix X satisfying the polynomial equation (4.1). Similarly, by 
substituting equation (4.9) in equations (4.10), (4.11), (4.12) and (4.13) then we also obtain the 
second value of rhotrix X satisfying the polynomial equation (4.1). Hence, the result follows. 
 
Remark 5. The polynomial equation of degree two in theorem 4.1 can be generalized to degree 
n. 
 

Acknowledgement 
My sincere thanks are due to my research supervisors, Professor G.U. Garba and Dr. B. Sani, 
for their helpful suggestions and encouragement. I also wish to thank my employer, Ahmadu 
Bello University, Zaria, Nigeria for funding this relatively new area of research.   

 
 

References 
[1] MOHAMMED, A., (2007), Enrichment exercises through extension to rhotrices, Int. J.  
     Math. Educ. Sci. Tech., 38, 131-136.  
[2] AJIBADE, A.O., (2003), The concept of rhotrix for mathematical enrichment, Int. J. Math.    
      Educ. Sci. Tech., 34, 175-179. 
[3] ATANASSOV,  K.T. and SHANNON, A,G., (1998), Matrix-tertions and matrix-noitrets:  
      exercises in mathematical enrichment, Int. J. Math. Educ. Sci. Tech., 29, 898-903. 
[4] SANI, B., (2004), An alternative method for multiplication of rhotrices, Int. J. Math.    
      Educ. Sci. Tech., 35, 777-781. 
[5]  BACKHOUSE, J.K. and HOULDSWORTH, S.P.T., (1982), Pure mathematics: a first  
      course (Harlow,Essex:Longman Group Limited). 


