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Abstract: It is well known that there are five classes of sloops of cardinality 16 " SL(16)s" 
according to the number of sub-SL(8)s [4, 6]. In this article, we will show that there are 
exactly 8 classes of nonsimple sloops and 6 classes of simple sloops of cardinality 20 
"SL(20)s". Based on the cardinality and the number of (normal) subsloops of SL(20), we 
will construct in section 3 all possible classes of nonsimple SL(20)s and in section 4 all 
possible classes of simple SL(20)s. We exhibit the algebraic and combinatoric properties of 
SL(20)s to distinguish  each class.  
So we may say that there are six classes of  SL(20)s having one sub-SL(10) and n sub-
SL(8)s for n = 0, 1, 2, 3, 4 or 6. All these sloops are subdirectly irreducible having exactly 
one proper homomorphic image isomorphic to SL(2). For n = 0, the associated SL(20) is a 
nonsimple subdirectly irreducible having one sub-SL(10) and no sub-SL(8)s. Indeed, the 
associated Steiner quasigroup SQ(19) of this case supplies us with a new example for a semi-
planar SQ(19), where the smallest well-known example of semi-planar squags is of 
cardinality 21 " cf. [3]".  
It is  well known that there is a class of  planar Steiner triple systems (STS(19)s) due to 
Doyen [7], where the associated  planar SL(20) has no sub-SL(10) and no sub-SL(8). In 
section 4 we will show that there are other 6 classes of simple SL(20)s having n sub-SL(8)s 
for n  = 0, 1, 2, 3, 4, 6, but no sub-SL(10)s. It is well-known that a sub-SL(m) of an SL(2m) 
is normal. In the last theorem of this section, we give a necessary and sufficient condition for 
a sub-SL(2) to be normal of an SL(2m). Accordingly, we have shown that if a sloop SL(20) 
has a sub-SL(10) and 12 sub-SL(8), then this sloop is isomorphic to the direct product 
SL(10) ×  SL(2) and if a sloop SL(20) has 12 sub-SL(8)s and no sub-SL(10), then this sloop 
is a subdirectly irreducible having exactly one proper homomorphic image isomorphic to 
SL(10). In section 5, we describe how can one construct an example for each class of smiple 
and of nonsimple SL(20)s. 
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Introduction: 
     A Steiner loop (briefly sloop) is a groupoid S = (S; ⋅ , 1 ) with neutral element 1 satisfying 
the identities:  

x ⋅ x =  1      ,      x ⋅ y = y ⋅  x       ,      x ⋅ ( x ⋅ y ) = y . 

A Steiner quasigroup  (briefly squag) is a groupoid  Q = (Q; ∗ ) satisfying the identities: 
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x ∗ x =  x       ,      x ∗ y = y ∗ x        ,      x ∗ ( x ∗ y ) = y . 
Notice that both squags and sloops are quasigroups [5, 8]. 

We use the abbreviations SL(n) and SQ(n) for a sloop and a squag of cardinality n, 
respectively. A sloop is called Boolean (or Boolean group) if it satisfies the associative law  
(x ⋅ y) ⋅  z   =  x ⋅ (y ⋅ z).  

      A Steiner triple system is a pair (P; B), where P is a set of points and B is a set of  3-
element subsets of  P called blocks such that for distinct points  p1,  p2  ∈ P, there is a unique 
block b ∈ B with {p1, p2} ⊆ b. If the cardinality of the set of points P is equal to n, the Steiner 
triple system (P; B) will be denoted by STS(n). It is well known that a necessary and 
sufficient condition for the existence of an STS(n) is  n ≡  1 or 3 (mod 6 ) [8, 11]. There is a 
one to one correspondence between sloops (squags) and Steiner triple systems given by the 
relation: 

x ⋅ y =  z ⇔ {x, y, z} is a block [8, 11, 12]. 

     Quackenbush [12] proved that the congruences of sloops are permutable, regular, and 
Lagrangian. A subsloop S of a sloop L is called normal iff                    (x ⋅ y) ⋅ S = x ⋅ (y ⋅ S) 
for all x, y ∈ L. Also in [12] was proved that if S is a subsloop of L and |L| = 2 |S|, then S is 
normal.  
 

A three distinct points x, y, z are called a triangle if {x, y, z} does not form a block (or 
equivalently, if {x, y, z} does not contains the identity element and x ⋅ y ≠  z). An STS is 
planar if it is generated by every triangle (. A planar STS(n) exists for each n ≥ 7 and n ≡ 1 or 
3 (mod 6) [7]). The associated squag and sloop of a planar triple system are also called 
planar. Quackenbush [12] has shown that the only nonsimple finite planar sloop (squag) has 
8 (9) elements. Accordingly, we may say that there is always a simple SQ(n) and a simple 
SL(n +1) for all n > 9 and  n ≡ 1 or 3 (mod 6).  

A semi-planar sloop (squag) is a simple sloop (squag) each of whose triangles 
generates either the whole sloop (squag) or a sub-SL(8) (a sub-SQ(9)). The associated STS 
with a semi-planar sloop (squag) is said to be a semi-planar STS or more precisely a semi-7-
planar STS (a semi-9-planar STS), if each of whose triangles generates either the whole STS 
or a sub-STS(7) (a sub-STS(9))  [2, 3, 12].  

The author in [2, 3] has given a construction of semi-planar sloops of cardinality 2(n 
+ 1) and a construction of semi-planar squags of cardinality 3 n for each possible n > 3.    
An extensive study of sloops can be found in [5, 8, 11]. We will use in this article some basic 
concepts of universal algebra [9] and some other concepts of graph theory [10]. 
 
There is a well-known classification of all SL(16)s  based on the number of sub-SL(8)s. In 
fact, there are four classes from five classes of SL(16)s  are subdirectly irreducible [4, 6, 11]. 
The next admissible order for sloops is of cardinality 20. In this article we are not interesting 
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in counting the number of distinct SL(20)s, but we exhibit the algebraic and combinatoric 
properties of SL(20)s to distinguish  each class.  
 

 We may divide all SL(20)s based on the cardinality and the number of the (normal) 
subsloops of an SL(20) into the following classes. Note that a sub-SL(10) in an SL(20) is 
always normal. 

 
1- There are planar STS(19)s due to Doyen [7]. The associated planar sloops SL(20)s 

and the associated planar squags SQ(19)s are simple. Indeed, these planar SL(20)s (or 
planar SQ(19)s) have no nontrivial subsloops (subsquags). 

2- In section 3, we will show that there are 7 classes of SL(20)s. Each of these classes 
has exactly one sub-SL(10) and n sub-SL(8)s (for n = 0, 1, 2, 3, 4, 6, 12). For n = 12, 
we have a class of SL(20)s containing one sub-SL(10) and 12 sub-SL(8)s, we will 
show that this sloop must be isomorphic to the direct product  SL(10) × SL(2). Also, 
all SL(20)s of the other six classes (for n = 0, 1, 2, 3, 4, 6) are nonsimple subdirectly 
irreducible. 
For n = 0, the associated SL(20) is nonsimple subdirectly irreducible having one sub-
SL(10) and no sub-SL(8)s. Indeed, the associated SQ(19) with this case supplies us 
with a new example for a semi-planar SQ(19) (or a semi-9-planar STS(19)). Of 
course, this class of semi-planar SQ(19)s are not planar and have exactly one sub-
SQ(9), but no sub-SQ(7). It will be convenient to note at this point that the smallest 
well-known example of semi-planar squags is of cardinality 21 " cf. [3]". An example 
of this new case (a semi-planar SQ(19)) will be given in section 5.  

3- In section 4, we will show that there are five classes of semi-planar SL(20)s based on 
the number n = 1, 2, 3, 4 or 6 of sub-SL(8)s. All of these semi-planar SL(20)s are 
simple and not planar. In addition, the associated SQ(19)s of these classes are simple 
and each triangle generates a sub-SQ(7) or the whole SQ(19). 

4- According to the construction given in section 4, there is a class of SL(20)s having no 
sub-SL(10) and 12 sub-SL(8)s. We will show that these sloops are subdirectly 
irreducible and have exactly one proper congruence with classes of cardinality two 
(one proper homomorphic image isomorphic to SL(10)).  

 
In fact, these are all classes of SL(20)s. In section 5 we describe how can one construct an 
example for each class.  

 
   
2. Construction of an SL(2n) = 2 ⊗α L1. 
 

Using the doubling construction SL(2n)s [11], we will study in this section some 
properties of subsloops of SL(2n)s .  
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Let T1 = (P*
1; B1 ) be an STS(n) and its corresponding sloop L1 = (P1; ⋅ , e), where  

P*
1 = {a1, ... , an} and P1 = P*

1 ∪ {e}. Consider the set of 1-factors defined by  Fi = {al ak : al 
. ak = ai  and ai , al , ak ∈ P1 }, then the class F = {F1, F2, ... , Fn} forms a 1-factorization of 
the complete graph Kn on the set of vertices P1. 

By taking the set P2 = {b, b1, b2, ... , bn} with P1 ∩ P2 = ∅ and Gi = {b bi } ∪       {bl bk : al ⋅ 
ak = ai for i ∉{ l, k}}, then the class of 1-factors G = {G1, G2, ... , Gn} forms a 1-factorization 
of the complete graph Kn on the set of vertices P2. There is a well-known construction of an 
STS(2n +1) = (P*; B) [11], where P*

 = P*
1 ∪ P2 and the set of triples B = B1 ∪ {{bl, bk, ai} : 

bl bk ∈ Gα(i)} for any permutation α on the set {1, ... , n}. The constructed STS(2n +1) = (P*; 
B)  and the associated sloop SL(2n+2) = (P; ⋅ , e) will be denoted by 2 ⊗α T1 and 2 ⊗α L1, 
respectively. 

If we choose the permutation α = the identity, then the constructed sloop L = 2 ⊗α L1  
isomorphic to the direct product of SL(n+1) = L1  and the 2-element sloop SL(2). We 
observe that L1 is a normal subsloop of  2 ⊗α L1 for any permutation α.  

It is easy to prove the following fact. 

Lemma 1. Let  2 ⊗α L1 = (P = P1 ∪ P2; ⋅ , e)  be the constructed  sloop of cardinality 2n   
with the subsloop L1 = (P1; ⋅ , e) of cardinality n. Then any subsloop S of L with S – P1 ≠ ∅ 
satisfies ⎢S ∩ P1⎥ = (1/2) ⎢S⎥. 
  
We note that if L1 is a planar sloop, then ⎢S ∩ P1⎥ = (1/2) ⎢S⎥ = 1, 2 or 4. 
 

In the following we consider the SL(10) = L1 = (P1 = P*
1 ∪ {e}; ⋅ , e) associated with 

the STS(9) = (P*
1; B1), where P*

1 = {a1, ... , a9}. Also, we consider the set P2 = {b, b1, b2, ... , 
b9} with P1 ∩ P2 = ∅ and α be any permutation on the set N = {1, 2, … , 9} to construct the 
SL(20) = 2 ⊗α L1. Moreover, we consider the        STS(9) = (N; X), where X is defined by: {i, 
j, k} ∈ X  if and only if {ai, aj, ak}∈ B1.   
  
The constructed STS(19) is given by 2 ⊗α T1 = (P* = P*

1 ∪ P2; B = B1 ∪ B12), where B12 = 
{{ai, bj, bk} :  bj bk ∈ Gα(i )}. Let 2 ⊗α L1 = (P; ⋅ , e) be the associated sloop  with STS(19) = 
2 ⊗α T1 .  
  

For each block {ai , aj , ak }∈ B1 there is a sub-1-factorization f = {fi = {e ai, aj ak}, fj 
= {e aj, ai ak}, fk = {e ak, ai aj}} of F. Conversely, if there is a sub-1-factorization on the 4-
element subset {e, ai, aj, ak}, then {ai, aj, ak} is a block in B1. This means that there is a one-
one correspondence between the set of blocks of B1 and the sub-1-factorizations of K4  in F.  
 
Lemma 2. Each of the 1-factorization F on the set P1  and the 1-factorization G on the set P2 
has exactly 12 sub-1-factorizations of K4. 
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Proof. The proof depends on the fact that if there is a sub-1-factorization on a 4-element 
subset {x, y, z, w}, then e ∈{x, y, z, w}. 
 

Moreover, the sub-1-facorizations of K4 in both F and G are determined by: 
 
f = {fi = {e ai, aj ak}, fj = {e aj, ai ak}, fk = {e ak, ai aj}} and  

g ={gi = {b bi, bj bk}, gj = {b bj, bi bk}, gk = {b bk, bi bj}} for all {i, j, k} ∈ X. 
 
Accordingly, we may easily verify the following two lemmas. 
 
Lemma 3: Let C1 = {e, ai, aj, ak} be a subsloop of L1. Then 2 ⊗α1 C1 = (C1 ∪ C2; ⋅ , e ) is a 

subsloop of  2 ⊗α L1 if  and only if {α(i), α(j), α(k)} is a line in X. Where α1 is equal to α 

restricted on the line {i, j, k} and C2 = {b, bα(i), bα(j), bα(k)}.  
 
The next lemma shows that the converse of the above lemma is also true.   
 
Lemma 4. Let S = (S; ⋅ , e)  be a subsloop of cardinality 8 of  2 ⊗α L1, then there is a 4-
element subsloop C1 ={e, ai, aj, ak} of L1 and a 4-element subset C2 = {b, bα(i), bα(j), bα(k)} of 
P2 satisfying S = 2 ⊗α1 C1 = (C1 ∪ C2; ⋅ , e) such that{α(i), α(j), α(k)} is a line of X. Where 

α1 is equal to the permutation  α restricted on the subset {i, j, k} and the binary operation "  ⋅ 
"  is the same binary operation defined on      2 ⊗α L1.  
  
Accordingly, we may say that the only possible nontrivial subsloops of 2 ⊗α L1 are L1 
(exactly one sub-SL(10)) and n (0 ≤ n ≤ 12) subsloops of cardinality 8. The intersection 
between L1 and each of the 8-element subsloops is a 4-element subsloop. Which implies that 
any proper subsloop S of 2 ⊗α L1 with S ≠ L1  may be determined by the set of elements S = 
{e, ai, aj, ak, b, bα(i), bα(j), bα(k)} such that {i,  j, k} and {α(i), α(j), α(k)} ∈ X. 
 
 
3. Subdirectly irreducible sloops of cardinality 20  
 

Any sloop of cardinality 20 has at most one subsloop of cardinality 10 and at most 12 
subsloops of cardinality 8. In particular, the direct product sloop SL(10) × SL(2) has exactly 
one sub-SL(10) and 12 sub-SL(8)s, but the planar SL(20) has no nontrivial subsloops. 
 
In the next theorem we exhibit all nonsimple subdirectly irreducible SL(20)s having a sub-
SL(10).   
 
Theorem 5. The constructed sloop 2 ⊗α L1 = (P = P1 ∪ P2; ⋅ , e) is isomorphic to the direct 

product of the subsloop SL(10) = L1 and the 2-element sloop SL(2), if and only if  2 ⊗α L1  

has 12 sub-SL(8)s, otherwise 2 ⊗α L1  is nonsimple subdirectly irreducible. Moreover, the 

constructed sloop 2 ⊗α L1 has exactly n subsloops of cardinality 8 if and only if the 
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permutation α transfers n lines into n lines of X for n = 0, 1, 2, 3, 4, 6, 12. Where X is the set 

of lines of the affine plane over GF(3). 
 
Proof.  Let 2 ⊗α L1 have 12 sub-SL(8)s, then α (X) := {{α(i), α(j), α(k)} : for all {i, j, k} ∈ 
X} = X. Consider the map ϕ from 2 ⊗α L1 to the direct product  L1 × {0, 1} by ϕ(e) = (1, 0) , 

ϕ(b) = (1, 1), ϕ(ai) = (ai, 0) and ϕ(bi) = (aα-1(i), 1). It is routine matter to proof that ϕ is an 
isomorphism. Notice that ϕ(ai bj) = ϕ(bk) if bj bk ∈ Gα(i ), so {α(i), j, k} is a line in X. Also, 

ϕ(bk) = (aα-1(k), 1) and ϕ(ai) ϕ(bj) = (ai, 0) (aα-1(j), 1) = (ai aα-1(j), 1), but α-1{α(i), j, k} = {i, α-

1(j), α-1(k)} is also a line in X, so ϕ(ai) ϕ(bj) = ϕ(bk).  
Since 2 ⊗α L1 has exactly one normal subsloop L1 of cardinality 10, so 2 ⊗α L1 is not simple. 
Another possible normal subsloop is the 2-element subsloop C2 with C2 ∩ L1 = {e}. But if  2 
⊗α L1 contains C2  as a normal subsloop, then 2 ⊗α L1 is isomorphic to the direct product 
SL(10) × SL(2) and has exactly 12 sub-SL(8)s. Therefore, if 2 ⊗α L1 has n sub-SL(8)s with n 
< 12, then the congruence lattice of    2 ⊗α L1 has only the normal subsloop  L1. Hence 2 ⊗α 
L1 is subdirecly irreducible for all possible n < 12.  
Let α transfer the line {i, j, k} ∈ X into the line {α(i), α(j), α(k)} ∈ X. According to Lemmas 3 
and 4, we may directly say that S = {e, ai, aj, ak, b, bα(i), bα(j), bα(k)}  forms a subsloop. Since α 
is a permutation on the set of points N = {1, 2, … , 9} of the affine plane over GF(3), the 
possible values of the number n of lines of X transferred into lines are 0, 1, 2, 3, 4, 6 or 12. 
This completes the proof of the theorem. 
 

In fact, there is another class of subdirectly irreducible SL(20)s having exactly one 
proper normal sub-SL(2) but no sub-SL(10). It will be described in the next section.   
 

In [1] the author has given a construction of subdirecly irreducible sloops of 
cardinality 2 m. This construction supplies us with an example of a subdirectly irreducible 
SL(20) of one of these classes.  
 

According to the results given in [12], the variety V1 generated by the SL(10) = L1 
covers the smallest nontrivial subvariety V0 (the class of all Boolean sloops ). The 
constructed subdirectly irreducible sloop 2 ⊗α L1 = SL(20) contains always a subsloop of 
cardinality 10 and has only one proper homomorphic image isomorphic to the Boolean sloop 
SL(2). According to the result given [1], we may deduce that each of these sloops SL(20) = 2 
⊗α L1 generates a variety V2 covers the variety V1. 

 
 
4. Semi-planar sloops of cardinality 20  
 

A semi-planar sloop is a simple sloop each of whose triangles generates either the 
whole sloop or a sub-SL(8) " cf. [2, 15]". The associated STSs with the semi-planar sloops 
will also be called semi-planar (or more precisely semi-7-planar). Each semi-planar SL(20) 
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contains sub-SL(8)s but no sub-SL(10)s. Based on the number n of sub-SL(8)s of SL(20), we 
will determine all classes of simple SL(20)s. So we have six distinct classes of simple sloops, 
one of them is the class of planar SL(20) and the other five classes are semi-planar SL(20)s. 
In [2] the author has given another construction of a semi-planar sloop SL(2m). This 
construction supplies us with exactly one class among these five classes.  
 

We will modify the construction of the subdirectly irreducible SL(20) = 2 ⊗α L1 = (P 
= P1 ∪ P2; ⋅ , e)  to a construction of semi-planar sloop denoted by 2 ⊗α L1. Let the 
associated STS(19) of the constructed subdirectly irreducible SL(20) = 2 ⊗α L1 has a sub-
STS(7) on the set of elements A* = {ai, aj, ak, b, bα(i), bα(j), bα(k)}; i.e., {i, j, k} and {α(i), α(j), 
α(k)} are lines in X. We will interchange the set of blocks:  

H = {{ai, aj,  ak}, {ai, bα(j), bα(k) }, {aj, bα(i), bα(k)}, {ak, bα(i), bα(j)}} 
with the set of triples 

R = {{ bα(i), bα(j), bα(k) }, { bα(i), aj, ak}, { bα(j), ai, ak}, { bα(k), ai, aj}} 
 

to get again an STS(19) = (P* = P*
1 ∪ P2; B- H ∪ R)  denoted by 2 ⊗α T1. The associated 

sloop will be denoted by 2 ⊗α L1 = (P = P1 ∪ P2; ⋅ , e). Notice that the difference between 
the binary operations “ ⋅ “ and  “ ⋅  “ is only restricted on the subset of elements of A*; i. e., x ⋅ 
y = x ⋅ y for all  x, y ∈P -A*.  
 

The next lemma is one of the main results of this section.  to show that the new 
construction 2 ⊗α L1 is a semi-planar sloop such that α transfers at least one line into a line 
and at most 6 lines into 6 lines of the affine plane over GF(3). 
 
Theorem 6. The constructed sloop 2 ⊗α L1 = (P = P1 ∪ P2; ⋅ , e) has no sub-SL(10). Also, 2 
⊗α L1 is a semi-planar sloop having n  sub-SL(8)s for each n  = 1, 2, 3, 4 or 6.. Where n is 
the number of lines of the affine plane over GF(3) transferred into lines by the permutation α.  
 
Proof. Let S = { x, y, z} be a triangle in 2 ⊗α L1 . At first, we want to prove that the subsloop 
<S> in 2 ⊗α L1 is equal to the whole sloop 2 ⊗α L1 or a sub-SL(8). 
Assume that ⎪<S> ∩ A⎪ ≤ 2, where A = {e, ai, aj, ak, b, bα(i), bα(j), bα(k)}, then the subsloop 
<S> in the sloop 2 ⊗α L1 is the same as the subsloop <S> in 2 ⊗α L1. So if <S> is a sub-
SL(10), then <S> = <S> = L1 contradicting the fact that  ai ⋅ aj = bα(k)  in 2 ⊗α L1.  
Also, if  <S> ∩ A = {e, b, ai, bα(i),}, {e, b, aj, bα(j)} or {e, b, ak, bα(k)}, then the subsloop <S> 
in the sloop 2 ⊗α L1 is the same as the subsloop <S> in 2 ⊗α L1. For the same reason, if <S> 
is a sub-SL(10), then <S> = <S> = L1 contradicting the fact that b∈ <S>. 
Moreover if ⎪<S> ∩ A⎪ > 4 , then <S> = A ; i.e., <S>  is a sub-SL(8). 
Now Assume that ⎜<S>⎟ = 10 and  
<S> ∩ A = {e, bα(i), aj, ak}, {e, bα(j), ai, ak},  {e, bα(k) , ai, aj} or {e, bα(i), bα(j), bα(k)}. 
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Each of these four blocks contains at least one element bα(t) lying in P2,  for  t = i,  j or k. If br 
or as ∈ <S> -  A , then bα(t) ⋅ br ∈P1 and bα(t) ⋅ as ∈P2 , This means that the 6-element subset  
<S> -  A  consists of two 3-element subsets {as1, as2, as3} ⊆ P*

1 and {br1, br2, br3} ⊆ P2. For 

the three case <S> ∩ A = {e, bα(i), aj, ak}, {e, bα(j), ai, ak} or {e, bα(k), ai, aj}, we have at ⋅ {as1, 

as2, as3} ≠ {as1, as2, as3} and  at ⋅ {as1, as2, as3} ∩ {e, ai, aj, ak} = ∅ for t = i,  j or k, this means 

that <S> consists of a 4-element subset of P2 and more than 6 elements lying in L1, hence <S> 
has more than 10 elements, so <S> must be equal to 2 ⊗α L1. 
For the case <S> ∩ A = {e, bα(i), bα(j), bα(k)}, the set  <S> -  A contains {as1, as2, as3} ⊆ P*

1 and  

{br1, br2, br3} ⊆ P2 . Let <S>* be the associated STS(9) with <S>, Since {as1, as2, as3} ∩ {ai, 

aj, ak} = ∅, the triple {as1, as2, as3} forms a block of <S>*. If <S> is a sub-SL(10), then the 

triple {br1, br2, br3} must  also be a block of <S>* contradicting the fact that the construction 2 

⊗α L1 contains exactly one block lying completely in P2 that is the block {bα(i), bα(j), bα(k)} ⊆ 
P2. Therefore, the subsloop <S> generated by any triangle S is equal to a sub-SL(8) or the 
whole sloop 2 ⊗α L1. This means that 2 ⊗α L1 has no sub-SL(10)s for all n = 1, 2, 3, 4, 6 or 
12, . 
Secondly, we have to prove that 2 ⊗α L1 has no proper congruence for  n = 1, 2, 3, 4 and 6. 
Assume that 2 ⊗α L1 has a congruence θ with [e]θ = {e, x}. If [e]θ ∩ A = {e}, then [A]θ is a 
sub-SL(16) which is impossible. Hence [e]θ ∩ A = [e]θ. Say [e]θ = {e, ai} ⊆ A and suppose 
that {aj, ar, as} is a block such that {aj, ar, as} ∩  {ai, aj, ak} = {aj} for i ≠ j, so we have [e]θ 
∪ [aj]θ ∪ [ar]θ ∪ [as]θ =  {e, ai, aj, ai ⋅ aj, ar, ai ⋅ ar, as, ai ⋅ as} = { e, ai, aj, bα(k), ar, al, as, ah}, 
where al = ai ⋅ ar  and ah = ai ⋅ as . But bα(k) ⋅ ar = bv ≠ bα(k) contradicting that [e] θ ∪ [aj]θ ∪ 
[ar]θ ∪[as]θ is an 8-element subsloop. 
Now assume that [e]θ = {e, bα(i)} ⊆ A and suppose that {aj, br, bs} is a block such that {aj, br, 
bs } ∩ A = {aj} for i ≠ j.  So we have  [e]θ ∪ [aj]θ ∪ [br]θ ∪[bs]θ =      {e, bα(i), aj,  bα(i) ⋅ aj, 
br, bα(i) ⋅ br, bs, bα(i) ⋅ bs} = { e, bα(i) , aj, ak , br, al, bs , ah}, where  bα(i) = aj ⋅ ak, al = bα(i) ⋅ br 
and ah = bα(i) ⋅ bs.  If aj ⋅ al = ah , then ak ⋅ al  ∉ [e]θ ∪ [ai]θ ∪ [br]θ ∪ [bs]θ contradicting that 
[e]θ ∪ [ai]θ ∪ [br]θ ∪ [bs]θ must be an 8-element subsloop. 
Now, assume that [e]θ = {e, b} ⊆ A and suppose that {l, m, n} is a line in X such that {α(l), 
α(m), α(n)} is not a line in X, then [e]θ ∪ [al ]θ ∪ [am ]θ ∪[an ]θ  = {e, b, al, bα(l), am, bα(m), 
an, bα(n)}. But according to Lemma  4, the set {e, b, al, bα(l), am, bα(m), an, bα(n)} does not form 
an SL(8). This means that 2 ⊗α L1 has no congruence θ with [e]θ = {e, x}, which implies that 
the constructed 2 ⊗α L1 is a semi-planar SL(20)  for all  n = 1, 2, 3, 4, 6. Therefore, the proof 
of the theorem is complete. 
 

Finally, for n =12, the permutation α transfers each line of X into a line. Then the 
constructed sloop 2 ⊗α L1 has 12 SL(8)s but no SL(10)s. It will be shown that  2 ⊗α L1 is not 
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simple. The next theorem shows that 2 ⊗α L1 in this case is subdiretly irreducible having 
exactly one normal subsloop that is a sub-SL(2). 
  
Theorem 7. Let  L be a sloop of cardinality 2m. A subsloop S = {e, x} is normal if and only 
if L contains (m - 1)(2m - 4)/12 sub-SL(8)s including the element x. 
 
Proof. If S is a normal subsloop of L, then L/S  is an SL(m). An SL(m) has (m - 1)(m - 2)/6  
4-element subsloops, which implies that L has (m - 1)(m - 2)/6  sub-SL(8)s containing S. 
On the another direction, the number of triangles of an SL(2m) passing through a fixed  point 
x is equal to (2m - 2)(2m - 3)/2  – (2m - 2)/ 2 = (m - 1)(2m - 4) and the number of triangles of 
an SL(8) passing through the fixed point x is equal to 12, then the maximum number of sub-
SL(8)s of an SL(20) containing x is equal to (m - 1)(2m - 4)/ 12. This means that if L 
contains (m - 1)(2m - 4)/ 12 sub-SL(8)s passing through  x, then each triangle in L generates 
a sub-SL(8). Let y, z ∈ L – {e, x}. If {e, x, y, z} forms a sub-SL(4) then y ⋅ z ⋅ (S) = y ⋅ (z ⋅ 
(S)). If {e, x, y, z} does not form a sub-SL(4), then {x, y, z} is a triangle in L and the subsloop 
generated by    {x, y, z} is an SL(8). It is well known that an SL(8) is always Boolean. This 
implies that y ⋅ z ⋅ (S) = y ⋅ (z ⋅ (S)). So S is normal. This completes the proof of the lemma. 
 
According to the above theorem, if the constructed SL(2m) = 2 ⊗α L1 has a simple SL(m) = 
L1 and (m - 1)(m - 2)/6  sub-SL(8)s passing through sub-SL(2) = {e, x}, so {e, x} is normal. 
Since L1 is simple then L1 ∩  {e, x} = {e}. According to the definition of the constructed 2 
⊗α L1, we have x = b, so the subsloops L1 and {e, b} are normal, then 2 ⊗α L1 is isomorphic 
to the direct product SL(m) × SL(2). This result agrees with result of Theorem 5.  
 
 Also, for m = 10 in the above theorem and according to Theorem 6, we may say that for  n  = 
12 the constructed sloop SL(20) = 2 ⊗α L1 has (10 - 1)(20 - 4)/12 = 12 sub-SL(8)s passing 
through sub-SL(2) = {e, b}, but no sub-SL(10).  So 2 ⊗α L1 has exactly one proper 
congruence θ with [e]θ = {e, b}. This means that the constructed sloop SL(20) = 2 ⊗α L1 is 
subdirectly irreducible having only one  proper homomorphic image isomorphic to SL(10).  

 
According to the results due to Quackenbush in [12], the variety V1 generated by 

SL(10) covers the smallest nontrivial subvariety V0 (the class of all Boolean sloops). And 
according to [2], we may deduce that each of the constructed semi-planar sloop SL(20) = 2 
⊗α L1 generates also a variety V`

1 (not comparable with V1) covering the variety of all 
Boolean sloops V0. 

 
 
5. Construction an example of each class of SL(20)s  
 
Let (P*

1; B1) be an STS(9), where P*
1 = {a1, a2, a3, a4, a5, a6, a7, a8, a9} and the set of blocks 

B1 is given by: 
 
B1 =    a1 a3 a4        a1 a2 a6         a1 a7 a8         a1 a5 a9         a2 a3 a9        a2 a4 a7  
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          a2 a5  a8       a3 a5 a7          a3 a6 a8        a4 a5 a6         a4 a8 a9         a6 a7 a9          
            
Let L1 = (P1 = P*

1 ∪ {e}; ⋅ , e) be the associated sloop of  (P*
1; B1). Also, let          P2 = {b, 

b1, b2, b3, b4, b5, b6, b7, b8, b9}. The 1-factorization F on the set P1 and the 1-factorization G 
on the set P2 are defined as in section 2 by: 
 
F = {F1, F2, ... , F9}, where Fi = {al ak : al . ak = ai  and ai, al, ak ∈ P1} and 

G = {G1, G2, ... , G9}, where Gi = {b bi }∪{bl bk : al ⋅ ak = ai for i ∉{l, k}}. 
 
The constructed STS(19) = 2 ⊗α T1 is defined by (P* = P*

1 ∪P2; B = B1 ∪ B12), where B12 = 
{{ai, bj, bk} :  bj bk ∈ Gα(i)}. The associated sloop 2 ⊗α L1 =                (P = P* ∪ {e}; ⋅ , e) 
with the STS(19) = 2 ⊗α T1 has the sub-SL(10) = L1 for each permutation α, so L1 is always 
normal in 2 ⊗α L1.  
 
For each block {ai , aj , ak} ∈ B1, we have the sub-1-factorizations: 
 
f = {fi = {e ai, aj ak}, fj = {e aj, ai ak}, fk = {e ak, ai aj}} and  

g = {gi = {b bi, bj bk}, gj = {b bj, bi bk}, gk = {b bk, bi bj}} for all {i, j, k} ∈ X. 
 
Where X = {{1, 3, 4}, {1, 2, 6}, {1, 7, 8}, {1, 5, 9}, {2, 3, 9}, {2, 4, 7}, 
                    {2, 5, 8}, {3, 5, 7}, {3, 6, 8},{4, 5, 6}, {4, 8, 9}, {6, 7, 9}} is the set of lines of 
the affine planar over GF(3) with the set of points N = {1, 2, … , 9}. 
 
By applying the interchange:  
 

H ={{a1, a3, a4}, {a1, b3, b4}, {a3, b1, b4}, {a4, b1, b3}} 
with the set of triples:   

R ={{b1, b3, b4}, {b1, a3, a4}, {b3, a1, a4}, {b4, a1, a3}} 
 
on the set  A* ={a1, a3, a4, b, b1, b3, b4}, we will get the associated sloop SL(20) =  2 ⊗α L1 
with the constructed triple system 2 ⊗α T1 = (P*; B - H ∪ R). 
  
The following 7 examples supplies us with an example for each class of SL(20) given in 
section 3 and in section 4.  
Notice that {1, 3, 4} is a line in X. We will choose the permutation α satisfying that α(1) = 1, 
α(3) = 3 and α(4) = 4 in all examples from (1) to (6): 
 

(1) α1 = idN ; i. e., α1 transfers each line into the same line in X. The constructed SL(20) 
= 2 ⊗α1 L1  has 12 sub-SL(8)s and one sub-SL(10); i. e.  2 ⊗α1 L1 is isomorphic to 

SL(10) × SL(2). And the constructed 2 ⊗α1 L1  is an SL(20) having 12 sub-SL(8)s 

but no sub-SL(10). The sloop 2 ⊗α1 L1 is subdirectly irreducible having exactly one 

proper homomorphic image ≅ SL(10). 
  

In all cases (2) – (7), the constructed SL(20) = 2 ⊗α L1 is subdirectly irreducible. And in all 
cases (2) - (6), the constructed SL(20) =   2 ⊗α L1 is a semi-planar sloop. 
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(2) α2 = (26); i. e., α2 transfers 6 lines into lines, namely, the set {{1, 3, 4}, {1, 2, 6}, {1, 
7, 8}, {1, 5, 9}, {4, 8, 9}, {3, 5, 7}}. The constructed SL(20) = 2 ⊗α2 L1 has one 

sub-SL(10) and 6 sub-SL(8)s. The constructed SL(20) = 2 ⊗α2 L1 has 6 sub-SL(8)s 

but no sub-SL(10).  
(3) α3 = (26) (78); i. e., α3 transfers 4 lines into lines, where the set of the four lines is 

{{1, 3, 4}, {1, 2, 6}, {1, 7, 8}, {1, 5, 9}}. The constructed SL(20) = 2 ⊗α3 L1 has 

one sub-SL(10) and 4 sub-SL(8)s. The constructed SL(20) = 2 ⊗α3 L1 has 4 sub-

SL(8)s but no sub-SL(10). 
(4) α4 = (258); i. e., α4 transfers 3 lines into lines, where the set of the three lines is {{1, 

3, 4}, {2, 5, 8}, {6, 7, 9}}. The constructed SL(20) = 2 ⊗α4 L1 has one sub-SL(10) 

and 3 sub-SL(8)s. The constructed SL(20) = 2 ⊗α4 L1 has 3 sub-SL(8)s but no sub-

SL(10). 
(5) α5 = (2567) (89); i. e., α5 transfers 2 lines into lines, where the set of lines is {{1, 3, 

4}, {4, 8, 9}}. The constructed SL(20) =  2 ⊗α5L1 has one sub-SL(10) and 2 sub-

SL(8)s. The constructed SL(20) = 2 ⊗α5 L1 has 2 sub-SL(8)s but no sub-SL(10). 

(6) α6 = (257968); i. e., α6 transfers only the line {1, 3, 4} into a line. The constructed 
SL(20) = 2 ⊗α6L1 has only one sub-SL(10) and one sub-SL(8). The constructed 

SL(20) =   2 ⊗α6L1 has only one sub-SL(8) but no sub-SL(10). 

(7) α7 = (123456798); i. e., α7 transfers no line into a line. The constructed SL(20) = 2 
⊗α7 L1 has only one sub-SL(10) and no sub-SL(8)s. In fact, the corresponding 

STS(19) = 2 ⊗α7T1 has exactly one sub-STS(9), but no sub-STS(7)s. This means 

that each triangle in the associated squag SQ(19) either generates the whole SQ(19) 
or a sub-SQ(9). Which implies that the associated squag SQ(19) is an example of a 
semi-planar squag of cardinality 19. We note that the smallest known cardinality of 
semi-planar squag is 21 (cf. [2]). 

 
The subsloops mentioned in the above examples are SL(10) = L1, in which L1 is always 
normal in  2 ⊗α L1 and the sub-SL(8)s determined by the set  {e, ai, aj, ak, b, bα(i), bα(j), bα(k)}, 
in which {i, j, k} and {α(i), α(j), α(k)} are lines of the affine plane over GF(3). 
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Appendix including proofs of lemmas 1, 2, 3 and 4  
 

Proof of lemma 1. We have that P1:={e, a1, … , an} and P2 :={b, b1, … , bn} are disjoint sets 
having the same cardinality n, in which P1 forms a subsloop of 2 ⊗α L1. Let S satisfy S – Pi 
≠∅ for i = 1 and 2, then ⎢S⎥ ≥ 2. If  ⎢S⎥ = 2, then S = {ai, bj}. For ⎢S⎥ > 2, since ai ⋅ bk  are 
always  element of P2, for all ai ∈ P1 and  bk ∈ P2 , then S contains at least a 2-element subset 
{ai, aj} ⊆  P1  and a 2-element subset {bk, bl} ⊆ P2 . Consider the map δbk (x) : = x ⋅ bk  for x ∈ 

S ∩ P1 . It is easy to see that the map δbj  is bijective from the subset S ∩ P1  onto the subset  

S – P1 . Which implies that ⎢S ∩ P1⎥ = (1/2) ⎢S⎥ = ⎢S ∩ P2⎥. 
 
Proof of lemma 2. Let f be a sub-1-factorization on Kr of F. Then the order r of the complete 
graph Kr is an even number less than or equal 10/2 = 5, hence r = 4. Indeed, if there is a sub-
1-factorization on a 4-element subset {x, y, z, w}, then e ∈{x, y, z, w}. Otherwise, assume 
that e ∉{x, y, z, w} and {x y, z w} ⊆ Fi, {x z, y w} ⊆ Fj and {x w, y z} ⊆ Fk form a sub-1-
factorization of K4. But e ai ∈ Fi,    e aj ∈ Fj and e ak ∈ Fk , then {e, ai, aj, ak} ∩ {x, y, z, w} = 
∅. This implies that Fi = {e ai, aj ak, x y, z w, u v} or  {e ai, aj u, ak v, x y, z w}, Hence the 
first case of Fi tends to the  1-factor  Fj ={e aj, ai ak, x z, y w, u v} and the second case of Fi 
leds to the 1-factor Fj = {e aj, ai u, ak v, x z, y w}, both cases contradict the fact that           Fi  
∩ Fj  = ∅. Similarly, if there is a sub-1-factorization on a 4-element subset      {x, y, z, w} of 
P2, then b must be an element of {x, y, z, w}. Since the number of blocks of B1 is 12, each of 
the 1-factorizations F and G has exactly 12 sub-1-facorizations of K4. This completes the 
proof.  
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Proof of lemma 3. Let  2 ⊗α1 C1 = (C1 ∪ C2 ; ⋅ , e )  be  a subsloop  of  2 ⊗α L1. Since C1 ={e, 
ai, aj, ak} is a subsloop of L1, there is a  sub-1-factorization f = {fi, fj, fk} on C1. According to 
the definition of 2 ⊗α1C1, there a sub-1-factorization  g = {gα(i) = {b bα(i), bα(j) bα(k)} ⊆ Gα(i), 

gα(j)  = {b bα(j), bα(i) bα(k)} ⊆ Gα(j),  gα(k)  = {b bα(k), bα( i) bα(j)} ⊆ Gα(k) on the subset C2 = {b, 
bα(i), bα(j), bα(k)} if and only if {α(i), α(j), α(k)} is a line of  X. This implies that 2 ⊗α1 C1 = (C1 

∪ C2; ⋅ , e)  is a subsloop  of  2 ⊗α L1, if  and only if {α(i), α(j), α(k)} is a line in X .  
 
Proof of lemma 4. According to Lemma 2, we may say that S ∩ L1 = C1 = C1 = {e, ai, aj, ak} 
is a 4-element subsloop and {i, j, k} is a line in X. So there is a sub-1-factorization f = {fi = {e 
ai, aj ak}, fj = {e aj, ai ak}, fk = {e ak, ai aj}} on C1. According to the construction 2 ⊗α L1 we 
have:  fi related with Gα(i), fj related with Gα(j) and fk related with Gα(k). Since S is a sub-SL(8), 
then{α(i), α(j), α(k)} is a line in X and  the three 1-factors Gα(i), Gα(j) and Gα(k) contains a 
sub-1-factorization g = {gα(i) = {b bα(i), bα(j) bα(k)}, gα(j) ={b bα(j), bα(i) bα(k)}, gα(k)  = {b bα(k), 
bα(i) bα(j)}} on the 4-element subset C2 = {b, bα(i), bα(j), bα(k)} of P2. According to the 
definition of the set of blocks B12 and using the sub-1-factorizations f and g, then the 
subsloop S can be represented by the construction 2 ⊗α1C1 = (C1 ∪ C2; ⋅ , e) , where α1 is 

equal to  α restricted on the subset {i, j, k}. This completes the proof. 
 
 


